west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "WANGYuntao" 4 results
  • DEVELOPMENT PROGRESS OF MESENCHYMAL STEM CELLS SENESCENCE

    ObjectiveTo summarize the research situation of mesenchymal stem cells (MSCs) senescence, including the characteristics and mechanisms of senescence. MethodsThe original articles in recent years about MSCs senescence were extensively reviewed, and comprehensively analyzed. ResultsThe senescence of MSCs which manifests as morphological senescence, reduced proliferation and differentiation potential, altered immunoregulation are found during the cultivation in experiment, which profoundly affects clinical application of MSCs. The research about the mechanisms of MSCs senescence includes telomere and telomerase, and stress-mediated injury etc, involving regulation of telomerase, and regulation of signal pathways of p53/p21, P13K/Akt, and Wnt/β-catenin etc. ConclusionThe further study of senescence mechanisms will help to accelerate the clinical application of MSCs in the future.

    Release date: Export PDF Favorites Scan
  • EXPRESSION OF p16INK4a IN NUCLEUS PULPOSUS AND ITS EFFECT ON DEGENERATED INTERVERTEBRAL DISCS

    ObjectiveTo investigate the expression of p16INK4a in nucleus pulposus (NP) and to clarify its relationship with intervertebral disc degeneration so as to provide evidence for biological repair of intervertebral disc. MethodsThe NP specimens were obtained from 17 patients with intervertebral disc degeneration undergoing discectomy, who aged 40-50 years (mean, 45.4 years). Based on the preoperative MRI, there were 10 cases of grade Ⅲ degeneration, and 7 cases of grade IV degeneration. Cell senescence was evaluated by detecting senescence-associated β-galactosidase (SA-β-gal) activity. Senescence marker (p16INK4a) and disc degeneration markers [A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS 5), Aggrecan, and Sryrelated HMG box transcri ption factor 9 (Sox-9)] were determined in the NP specimens with immunohistochemistry and Western blot. The correlation between ADAMTS 5 and p16INK4a was analyzed. ResultsClustered distribution of green SA-β-gal-positive cells was seen in the NP with grade Ⅲ and IV degeneration. A few single round SA-β-gal-positive NP cells (NPCs) wrapped by the layered extracellular matrix were also seen in the NP with grade Ⅲ degeneration. It was difficult to see single distribution of NPCs in the NP with grade IV degeneration. The percentage of SA-β-gal-positive cells was 22.7%±5.4% and 37.1%±7.6% in the NP with grade Ⅲ and IV degeneration respectively, showing significant difference (t=-9.666, P=0.000). The percentages of p16INK4a-positive and ADAMTS 5-positive NPCs in the NP with grade IV degeneration were significantly higher than those with grade Ⅲ degeneration (P<0.05). The percentages of Aggrecan-positive and Sox-9-positive NPCs in the NP with grade IV degeneration were significantly lower than those in the NP with grade Ⅲ degeneration (P<0.05). The protein expressions of Aggrecan and Sox-9 in the NP with grade IV degeneration were significantly lower than those in the NP with grade Ⅲ degeneration (P<0.05). The NP with grade IV degeneration showed significantly higher protein expressions of p16INK4a and ADAMTS 5 (P<0.05). Importantly, there was a good correlation between p16INK4a and ADAMTS 5 protein expressions (r=0.908, P=0.000). ConclusionPremature senescent NPCs increase in the NP with the advancing disc degeneration. The expression of p16INK4a and its association with degeneration grades suggest that the p16INK4a may play a significant role in the pathogenesis of intervertebral disc degeneration.

    Release date: Export PDF Favorites Scan
  • AN IN VITRO STUDY ON BIOLOGICAL CHARACTERISTICS OF BONE MARROW MESENCHYMAL STEM CELLS IN MICROENVIRONMENT OF PREMATURE SENESCENCE OF NUCLEUS PULPOSUS CELLS

    ObjectiveTo investigate the biological characteristics of bone marrow mesenchymal stem cells (BMSCs) in microenvironment of premature senescence of nucleus pulposus cells (NPCs) so as to lay a foundation for the repair of intervertebral disc degeneration by BMSCs transplantation. MethodsHuman degenerative nucleus pulposus and normal bone marrow were collected, and then NPCs and BMSCs were isolated, cultured, and identified. The 3rd passage BMSCs and the 1st passage NPCs with premature senescence were co-cultured without contact in the Transwell culture system. NPCs to BMSCs ratio was 75%:25% (group A), 50%:50% (group B), and 0:100% (group C). The morphological changes of BMSCs were observed by inverted phase contrast microscopy and transmission electron microscopy. At 3 and 6 days after co-culture, cell counting kit 8 was used to detect cell viability, flow cytometry was used to observe the cell cycle and detect DNA metabolism after BrdU labeling. Cell senescence was also evaluated by detecting senescence associated β-galactosidase (SA-β-gal) activity. ResultsThe typical morphology of cell senescence was seen in groups A and B, especially in group A. At 3 and 6 days after co-culture, the cell survival rate of group A was significantly lower than that of group B (P<0.05). At 3 days after co-culture, the proportion of cells in G1 phase in group A was significantly higher than that in groups B and C (P<0.05), the proportion of cells in S phase in group A was significantly lower than that in groups B and C (P<0.05). At 6 days, the proportion of cells in G1 phase in group A was about 81.0%, and the proportion of cells in S phase and G2 phase decreased, showing significant difference when compared with groups B and C (P<0.05); the proportion of cells in G1 phase in group B was about 74.4%, showing significant difference when compared with group C (P<0.05). BrdU content in group A was significantly lower than that in groups B and C at 3 and 6 days after co-culture (P<0.05), but no significant difference was found between groups B and C at 3 days (P>0.05); Brdu content in group B was also significantly reduced when compared with group C (P<0.05) at 6 days. At 6 days, SA-β-gal activity was significantly increased in groups A and B, and significant difference was shown in SA-β-gal positive cell number between groups (P <0.05). ConclusionPremature senescence of NPCs can down-regulate the proliferation capacity of co-cultured BMSCs by the paracrine effect. The greater proportion of NPCs with premature senescence is, the earlier senescence of BMSCs will be induced.

    Release date: Export PDF Favorites Scan
  • ISOLATION AND IDENTIFICATION OF RAT INTERVERTEBRAL DISC NUCLEUS PULPOSUS CELLS AT DIFFERENT SEGMENTS AND COMPARATIVE STUDY ON BIOLOGICAL CHARACTERISTICS

    ObjectiveTo isolate nucleus pulposus cells (NPCs) from the caudal and lumbar intervertebral disc of rat, and to identify the morphology and to compare the characteristics. MethodsThe whole spine was separated from 8-week-old Sprague Dawley rats under the sterile conditions. NPCs of different segments (lumbar group: L1,2-L6, S1; caudal group: C1,2-C17,18) were cultured by adherent cultivation approach. Cellular morphologic change was noted by HE staining and continuous observation under inverted phase contrast microscope. Besides, the aggrecan and collagen type Ⅱexpression were examined by toluidine blue and immunocytochemistry staining respectively. The total protein contents, senescence level, and the cell viability of passage 1-5 (P1-5) were detected. The growth curves of the P1 cells in lumbar and caudal groups were determined by cell counting kit 8. ResultsThe NPCs were isolated and identified successfully. The adherence time of the primary cells (the cell fusion reached 90%) in lumbar group was significantly longer than that in caudal group in primary generation (P<0.05). HE staining showed that cytoplasm was pink with the blue nucleus. Lumbar disc NPCs were spindle. The larger caudal disc NPCs were polygonal or irregular. Toluidine blue staining showed that the proteoglycan was stained as blue. In the cytoplasm of cells, collagen type Ⅱwas stained as brown surround the blue-black nucleus. The cell viability had no significant difference between lumbar and caudal groups and between different passages in the same group (P>0.05). The caudal disc NPCs reached their logarithmic growth phase after 3 days of culture, while the cells in lumbar segments did after 4-5 days of culture. The cell proliferation in caudal segments was more than that in lumbar segments at 3-9 days (P<0.05). The difference in the total protein contents was not significant between cells at P1-5 in 2 groups (P>0.05), and the caudal disc NPCs had higher protein contents than lumbar disc NPCs (P<0.05). There was no significant difference in cell senescence rate between cells at P1, P2, and P3 in 2 groups (P>0.05), but significant difference was shown in senescence rate between 2 groups in cells at P4 and P5 (P<0.05). ConclusionCaudal disc NPCs have a better status, which is more suitable for experiment as a seed cell than the lumbar disc NPCs in the same generation.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content