west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "WEI Junchao" 2 results
  • Effects of SMILE with different residual stromal thicknesses on corneal biomechanical properties of rabbits in vivo

    Femtosecond laser small incision lenticule extraction (SMILE) with different residual stromal thicknesses (RST) is set to investigate its effect on corneal biomechanical properties of rabbits in vivo. In this study, 24 healthy adult Japanese rabbits were randomly divided into group A and B. The RST of group A was set 30% of the corneal central thickness (CCT), and the RST of group B was 50% of the CCT. The thickness of the corneal cap in both groups was set one third of CCT. Corneal visualization Scheimpflug technology (Corvis ST) and Pentacam three-dimensional anterior segment analyzer were used to determine corneal biomechanical and morphological parameters before surgery, and 1 week, 1 month and 3 months after surgery. Pearson correlation analysis was used to analyze factors affecting corneal biomechanical parameters after SMILE. The results showed that the corneal stiffness of group A was significantly higher than that of group B at 1 week and 1 month after surgery, and most biomechanical parameters returned to preoperative levels at 3 months postoperatively. The results of correlation analysis showed that postoperative CCT and RST were the main factors affecting corneal biomechanical parameters after SMILE. There was no significant difference in corneal posterior surface height (PE) between 3 months after surgery and before surgery in both two groups. It indicates that although the ability to resist deformation of cornea decreases in SMILE with thicker corneal cap and less RST, there is no tendency to keratoconus, which may be related to the preservation of more anterior stromal layer.

    Release date: Export PDF Favorites Scan
  • Anisotropy and viscoelasticity of different corneal regions in rabbit corneal ectasia model

    The mechanical properties of the cornea in corneal ectasia disease undergo a significant reduction, yet the alterations in mechanical properties within distinct corneal regions remain unclear. In this study, we established a rabbit corneal ectasia model by employing collagenase II to degrade the corneal matrix within a central diameter of 6 mm. Optical coherence tomography was employed for the in vivo assessment of corneal morphology (corneal thickness and corneal curvature) one month after operation. Anisotropy and viscoelastic characteristics of corneal tissue were evaluated through biaxial and uniaxial testing, respectively. The results demonstrated a marked decrease in central corneal thickness, with no significant changes observed in corneal curvature. Under different strains, the elastic modulus of the cornea exhibited no significant differences in the up-down and naso-temporal directions between the control and model groups. However, the cornea in the model group displayed a significantly lower elastic modulus compared to the control group. Specifically, the elastic modulus of the central region cornea in the model group was significantly lower than that of the entire cornea within the same group. Moreover, in comparison to the control group, the cornea in the model group exhibited a significant increase in both creep rate and overall deformation rate. The instantaneous modulus and equilibrium modulus were significantly reduced in the model cornea. No significant differences were observed between the entire cornea and the central cornea concerning these parameters. The results indicate that corneal anisotropy remains unchanged in collagenase-induced ectatic cornea. However, a significant reduction in viscoelastic properties is noticed. This study provides valuable insights for investigating changes in corneal mechanical properties within different regions of ectatic corneal disease.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content