The coronavirus disease 2019 (COVID-19) epidemic has had a serious impact in the world. In the absence of vaccines and therapeutic drugs, disinfection has become an important technical means to block the spread of the virus. By analyzing the characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we studied a series of disinfection technologies for COVID-19. During the outbreak of COVID-19, Jinan Second Center for Disease Control and Prevention disinfected the houses of the cases to be investigated in a community. The effectiveness of the disinfection technology was verified through the process of disinfection preparation, sampling before disinfection, field disinfection, sampling after disinfection and evaluation of disinfection effect. Compared the data before and after disinfection, the killing rate of the total bacterial colonies in the air and on the surface of the object was more than or equal to 90%, and no SARS-CoV-2 was detected after disinfection. The results show that the disinfection effect of the disinfection technology meets the standard. Finally, through the analysis of the wrong way of disinfection and the harm of over disinfection, the importance of scientific disinfection and precise disinfection are emphasized, and the research has a good guiding value for prevention and control of the epidemic.
ObjectiveTo explore the relationship between aberrant promoter CpG islands methylation status of E-cadherin gene and hepatocarcinogenesis, and to assess its significance in clinical early diagnosis of hepatocellular carcinoma (HCC). MethodsSurgically resected specimens, among which cancerous and corresponding noncancerous liver tissues from 34 HCC patients, 10 liver cirrhosis from patients without HCC and normal liver tissues from 4 accidental deaths, were collected in West China Hospital. Breast cancer cell line MDA-MB-435 with promoter CpG islands hypermethylation of E-cadherin as positive control was gained from the Cell Bank of Chinese Academy of Sciences in Shanghai. The methylation status of promoter CpG island of E-cadherin gene was detected by nested methylationspecific polymerase chain reaction (nested-MSP). ResultsE-cadherin gene promoter CpG islands hypermethylation was found in 61.76% (21/34) of cancerous tissues, in 29.41% (10/34) of noncancereous tissues from the 34 HCC patients and in 50.00% (5/10) liver cirrhosis from patients without HCC. None of the 4 normal liver samples were detected E-cadherin mehylation positive. Moreover, the methylation of E-cadherin gene was significantly more frequent in 34 cancerous than that in corresponding noncancerous liver tissues (Plt;0.05), which had no significant difference between the 10 cirrhotic samples and cancerous or non-cancerous liver tissues (Pgt;0.05). In 34 cancerous samples, with the combination of both biomarkers of E-cadherin methylation and AFP400 (serum AFP level at a cutoff of 400 μg/L), the diagnostic sensitivity of HCC increased to 82.35%. ConclusionsThe aberrant promoter methylation of E-cadherin gene may play a vital role in the development and progression of HCC. Moreover, it might be an early event in hepatocarcinogensis. It is of high value to make further study to confirm the significance of E-cadherin gene methylation in clinical diagnosis and therapy.