west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "WU Shuicai" 8 results
  • A new method for classification of Alzheimer’s disease combined with structural magnetic resonance imaging texture features

    In this paper, a new method for the classification of Alzheimer’s disease (AD) using multi-feature combination of structural magnetic resonance imaging is proposed. Firstly, hippocampal segmentation and cortical thickness and volume measurement were performed using FreeSurfer software. Then, histogram, gradient, length of gray level co-occurrence matrix and run-length matrix were used to extract the three-dimensional (3D) texture features of the hippocampus, and the parameters with significant differences between AD, MCI and NC groups were selected for correlation study with MMSE score. Finally, AD, MCI and NC are classified and identified by the extreme learning machine. The results show that texture features can provide better classification results than volume features on both left and right sides. The feature parameters with complementary texture, volume and cortical thickness had higher classification recognition rate, and the classification accuracy of the right side (100%) was higher than that of the left side (91.667%). The results showed that 3D texture analysis could reflect the pathological changes of hippocampal structures of AD and MCI patients, and combined with multi-feature analysis, it could better reflect the essential differences between AD and MCI cognitive impairment, which was more conducive to clinical differential diagnosis.

    Release date:2019-02-18 03:16 Export PDF Favorites Scan
  • Application of semantic segmentation based on convolutional neural network in medical images

    With the rapid development of network structure, convolutional neural networks (CNN) consolidated its position as a leading machine learning tool in the field of image analysis. Therefore, semantic segmentation based on CNN has also become a key high-level task in medical image understanding. This paper reviews the research progress on CNN-based semantic segmentation in the field of medical image. A variety of classical semantic segmentation methods are reviewed, whose contributions and significance are highlighted. On this basis, their applications in the segmentation of some major physiological and pathological anatomical structures are further summarized and discussed. Finally, the open challenges and potential development direction of semantic segmentation based on CNN in the area of medical image are discussed.

    Release date:2020-08-21 07:07 Export PDF Favorites Scan
  • Monitoring microwave ablation using ultrasound backscatter homodyned K imaging: Comparison of estimators

    The feasibility of ultrasound backscatter homodyned K model parametric imaging (termed homodyned K imaging) to monitor coagulation zone during microwave ablation was investigated. Two recent estimators for the homodyned K model parameter, RSK (the estimation method based on the signal-to-noise ratio, the skewness, and the kurtosis of the amplitude envelope of ultrasound) and XU (the estimation method based on the first moment of the intensity of ultrasound, X statistics and U statistics), were compared. Firstly, the ultrasound backscattered signals during the microwave ablation of porcine liver ex vivo were processed by the noise-assisted correlation algorithm, envelope detection, sliding window method, digital scan conversion and color mapping to obtain homodyned K imaging. Then 20 porcine livers’ microwave ablation experiments ex vivo were used to evaluate the effect of homodyned K imaging in monitoring the coagulation zone. The results showed that the area under the receiver operating characteristic curve of the RSK method was 0.77 ± 0.06 (mean ± standard deviation), and that of the XU method was 0.83 ± 0.08 (mean ± standard deviation). The accuracy to monitor the coagulation zone was (86 ± 10)% (mean ± standard deviation) by the RSK method and (90 ± 8)% (mean ± standard deviation) by the XU method. Compared with the RSK method, the Bland-Altman consistency for the coagulation zone estimated by the XU method and that of actual porcine liver tissue was higher. The time for parameter estimation and imaging by the XU method was less than that by the RSK method. We conclude that ultrasound backscatter homodyned K imaging can be used to monitor coagulation zones during microwave ablation, and the XU method is better than the RSK method.

    Release date:2021-06-18 04:52 Export PDF Favorites Scan
  • A review on the application of UK Biobank in neuroimaging

    UK Biobank (UKB) is a forward-looking epidemiological project with over 500, 000 people aged 40 to 69, whose image extension project plans to re-invite 100, 000 participants from UKB to perform multimodal brain magnetic resonance imaging. Large-scale multimodal neuroimaging combined with large amounts of phenotypic and genetic data provides great resources to conduct brain health-related research. This article provides an in-depth overview of UKB in the field of neuroimaging. Firstly, neuroimage collection and imaging-derived phenotypes are summarized. Secondly, typical studies of UKB in neuroimaging areas are introduced, which include cardiovascular risk factors, regulatory factors, brain age prediction, normality, successful and morbid brain aging, environmental and genetic factors, cognitive ability and gender. Lastly, the open challenges and future directions of UKB are discussed. This article has the potential to open up a new research field for the prevention and treatment of neurological diseases.

    Release date:2021-06-18 04:52 Export PDF Favorites Scan
  • Multimodal high-grade glioma semantic segmentation network with multi-scale and multi-attention fusion mechanism

    Glioma is a primary brain tumor with high incidence rate. High-grade gliomas (HGG) are those with the highest degree of malignancy and the lowest degree of survival. Surgical resection and postoperative adjuvant chemoradiotherapy are often used in clinical treatment, so accurate segmentation of tumor-related areas is of great significance for the treatment of patients. In order to improve the segmentation accuracy of HGG, this paper proposes a multi-modal glioma semantic segmentation network with multi-scale feature extraction and multi-attention fusion mechanism. The main contributions are, (1) Multi-scale residual structures were used to extract features from multi-modal gliomas magnetic resonance imaging (MRI); (2) Two types of attention modules were used for features aggregating in channel and spatial; (3) In order to improve the segmentation performance of the whole network, the branch classifier was constructed using ensemble learning strategy to adjust and correct the classification results of the backbone classifier. The experimental results showed that the Dice coefficient values of the proposed segmentation method in this article were 0.909 7, 0.877 3 and 0.839 6 for whole tumor, tumor core and enhanced tumor respectively, and the segmentation results had good boundary continuity in the three-dimensional direction. Therefore, the proposed semantic segmentation network has good segmentation performance for high-grade gliomas lesions.

    Release date: Export PDF Favorites Scan
  • Fetal electrocardiogram signal extraction and analysis method combining fast independent component analysis algorithm and convolutional neural network

    Fetal electrocardiogram (ECG) signals provide important clinical information for early diagnosis and intervention of fetal abnormalities. In this paper, we propose a new method for fetal ECG signal extraction and analysis. Firstly, an improved fast independent component analysis method and singular value decomposition algorithm are combined to extract high-quality fetal ECG signals and solve the waveform missing problem. Secondly, a novel convolutional neural network model is applied to identify the QRS complex waves of fetal ECG signals and effectively solve the waveform overlap problem. Finally, high quality extraction of fetal ECG signals and intelligent recognition of fetal QRS complex waves are achieved. The method proposed in this paper was validated with the data from the PhysioNet computing in cardiology challenge 2013 database of the Complex Physiological Signals Research Resource Network. The results show that the average sensitivity and positive prediction values of the extraction algorithm are 98.21% and 99.52%, respectively, and the average sensitivity and positive prediction values of the QRS complex waves recognition algorithm are 94.14% and 95.80%, respectively, which are better than those of other research results. In conclusion, the algorithm and model proposed in this paper have some practical significance and may provide a theoretical basis for clinical medical decision making in the future.

    Release date: Export PDF Favorites Scan
  • A review on brain age prediction in brain ageing

    The human brain deteriorates as we age, and the rate and the trajectories of these changes significantly vary among brain regions and among individuals. Because neuroimaging data are potentially important indicators of individual's brain health, they are commonly used in brain age prediction. In this review, we summarize brain age prediction model from neuroimaging-based studies in the last ten years. The studies are categorized based on their image modalities and feature types. The results indicate that the prediction frameworks based on neuroimaging holds promise toward individualized brain age prediction. Finally, we addressed the challenges in brain age prediction and suggested some future research directions.

    Release date:2019-06-17 04:41 Export PDF Favorites Scan
  • Research progress on computed tomography image detection and classification of pulmonary nodule based on deep learning

    Computer-aided diagnosis based on computed tomography (CT) image can realize the detection and classification of pulmonary nodules, and improve the survival rate of early lung cancer, which has important clinical significance. In recent years, with the rapid development of medical big data and artificial intelligence technology, the auxiliary diagnosis of lung cancer based on deep learning has gradually become one of the most active research directions in this field. In order to promote the deep learning in the detection and classification of pulmonary nodules, we reviewed the research progress in this field based on the relevant literatures published at domestic and overseas in recent years. This paper begins with a brief introduction of two widely used lung CT image databases: lung image database consortium and image database resource initiative (LIDC-IDRI) and Data Science Bowl 2017. Then, the detection and classification of pulmonary nodules based on different network structures are introduced in detail. Finally, some problems of deep learning in lung CT image nodule detection and classification are discussed and conclusions are given. The development prospect is also forecasted, which provides reference for future application research in this field.

    Release date:2019-08-12 02:37 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content