ObjectivesTo explore the changes of some peripheral blood cells related to inflammation in patients with non-arteritis central retinal artery occlusion (NA-CRAO). MethodsA retrospective clinical study. From July 2019 to July 2021, a total of 218 patients with NA-CRAO hospitalized (NA-CRAO group) in Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital) and 218 patients with routine physical examination (control group) during the same period were included in the study. There were no significant differences in age (t=0.60), sex composition ratio (χ2=0.83) and body mass index (t=0.77) between the two groups (P>0.05). 0.2 ml fasting peripheral blood was collected from the subject, and white blood cells (WBC), neutrophils (NEUT), lymphocytes (LYMPH), red blood cells (RBC), RBC distribution width (RDW), platelets (PLT), mean PLT volume (MPV), and large PLT ratio (PLCR) were detected. The NEUT/LYMPH ratio (NLR) and PLT/LYMPH ratio (PLR) were calculated. t test was used to compare measurement data between groups. Multiple logistic regression analysis was performed for blood cells with P<0.05. The receiver operating characteristic curve (ROC curve) was used to calculate the area under the curve (AUC) and 95% confidence interval (95%CI) of each inflammatory indicator, and the optimal cutoff value was determined according to the Jorden index (sensitivity+specificity-1). ResultsCompared with control group, WBC, NEUT, NLR, RDW, PLR were increased in NA-CRAO group, while RBC and LYMPH were decreased, with statistical significance (t=9.68, 12.43, 9.47, 3.64, 5.54, 5.18, 0.46; P<0.001). There was no significant difference in PLT, MPV and PLCR between the two groups (t=0.32, 1.56, 0.84; P>0.05). Multivariate logistic regression analysis showed that NLR was a possible risk factor for the occurrence of NA-CRAO (odds ratio=2.51, 95%CI 0.780-0.859, P=0.031). ROC curve analysis showed that the AUC predicted by NLR was 0.819, the optimal critical value was 3.05, and the sensitivity and specificity were 59.2% and 92.7%, respectively. ConclusionsIn peripheral blood cells of NA-CRAO patients, NEUT is significantly increased and LYMPH is decreased. NLR is a possible risk factor for NA-CRAO.
Objective To observe the clinical and imaging features of non-arteriotic central retinal artery occlusion (NA-CRAO) with internal boundary membrane detachment (ILMD), and to analyze its relationship with visual prognosis. MethodsA retrospective clinical study. A total of 88 patients with NA-CRAO hospitalized in Department of Ophtalmology, Xi'an People's Hospital (Xi'an Fourth Hospital) from January 2014 to June 2023 were included in the study. Best corrected visual acuity (BCVA), optical coherence tomography (OCT) and fluorescein fundus angiography (FFA) were performed. The BCVA test used the international standard visual acuity chart, which was statistically converted to the logarithm of the minimum angle of resolution (logMAR) visual acuity. OCT observed the presence of ILMD and the thickening of the inner retina and the disappearance of anatomical stratification. FFA recorded arm-retinal circulation time (A-Rct) and retinal arterion-distal filling time (FT), and observed ciliary retinal artery, fluorescein retrograde filling, cotton spots, luciferin nodal filling, macular non-perfusion, capillary fluorescein leakage, optic disc strong fluorescence, choroidal background weak fluorescence and other characteristics. According to whether there was ILMD, the patients were divided into ILMD group and non-ILMD group, with 44 cases and 44 eyes respectively. The two groups received the same treatment. The follow-up time was 30 days after treatment. The clinical, FFA characteristics and BCVA before and after treatment were compared between the two groups. t-test was used for comparison between groups. ResultsIn ILMD group and non-ILMD group, there were 43 cases of male and 1 case of female, respectively, and the proportion of male was significantly higher than that of female. Before and after treatment, the logMAR BCVA of ILMD group and non-ILMD group were 2.35±0.42, 2.01±0.46, 1.47±0.60, 0.77±0.49, respectively. There were significant differences in logMAR BCVA between the two groups before and after treatment (t=8.025, 12.358; P<0.001). Before treatment, A-Rct and FT in ILMD group were longer than those in non-ILMD group, and the difference was statistically significant (t=3.052, 3.385; P<0.05). After treatment, there was no significant difference (t=1.040, 1.447; P>0.05). The proportion of ciliary retinal artery and cotton plaque in ILMD group was lower than that in non-ILMD group. There was no significant difference in ciliary retinal artery between the two groups (χ2=-0.961, P>0.05), but there was a significant difference in cotton wool plaque between the two groups (χ2=-3.364, P<0.05). Compared to the non-ILMD group, The proportion of retrograde fluorescein filling in retinal artery (χ2=-2.846), segment filling (χ2=-3.907), macular non-perfusion (χ2=-6.656), capillary fluorescein leakage (χ2=-4.367), optic disc strong fluorescence (χ2=-3.525) and choroidal background weak fluorescence (χ2=-2.276) increased, the difference was statistically significant (P<0.05). ConclusionsIn patients with NA-CRAO, compared with those without ILMD, those with ILMD have more severe retinal ischemia and worse BCVA before and after treatment. ILMD is one of the poor prognostic markers of NA-CRAO vision.