Objective Melatonin (MLT) can increase the expression of cartilage-derived growth factor and stimulate the synthesis of cartilage matrix. To investigate the prevention and treatment effects of MLT on damaged cartilage through observing the expressions of bone morphogenetic protein 2 (BMP-2) and interleukin 1β (IL-1β) in articular cartilage of the rats with osteoarthritis (OA). Methods Forty SPF 4-week-old male SD rats (weighing 120-150 g) were randomly divided into 4 groups (n=10): normal control group (group A), OA group (group B), OA/pinealectomy group (group C), and OA/ pinealectomy/MLT group (group D). The rats of group A served as a control without treatment. The rats of groups B, C, andD underwent left knee joint injection of 0.2 mL 4% papain solution 1 time every other day for 2 weeks for establ ishing OAmodel. Two weeks after papain injection, the rats of groups C and D were exposed to continuous l ight for 24 hours (intensity of illumination: 500 lx) for creating pinealectomy models. And at the next day after pinealectomy model establ ishing, the rats of group D were treated with intra-articular injections of 0.2 mL 20 mg/mL MLT solution 4 times a week for 4 weeks. At 1 week after last MLT injection, the venous blood samples were taken in groups A, B, and C to test the level of serum MLT by ELISA, respectively, and then the specimens of left cartilage of femoral condyle were harvested for macroscopic, histological, and immunohistochemical examinations in 4 groups. Results The OA and pinealectomy models of rats were successfully establ ished, and all rats survived. There were significant differences in the serum MLT level among groups A, B, and C, and among different time points at the same group (P lt; 0.05). In group A, articular cartilage surface was smooth and elastic, and chondrocytes arranged regularly. In groups B and C, articular cartilage surface was rough, cartilage defects and subchondral bone exposure were observed in some areas, and chondrocytes arranged irregularly. In group D, cartilage surface was more smooth than that in groups B and C, and the degrees of cartilage defect and subchondral bone exposure decreased with regular arrangment of chondrocytes. There were significant differences in Mankin scores and integral absorbance values among 4 groups (P lt; 0.05). Conclusion Exposure to continuous l ight can accelerate degeneration process of articular cartilage of OA rats. Injections of 0.2 mL MLT solution (20 mg/mL) by intra-articular for 4 weeks can inhibit the progress of cartilage defects. Upregulationof anabol ic factor of BMP-2 as well as down-regulation of catabol ic factors of IL-1β is associated with cartilage repairin the pathological features of OA.
Objective To research the gene expression of transforming growth factor β1 (TGF-β1) in zone Ⅱ flexor tendon wound healing of rabbit. Methods Sixty New Zealand white rabbits forepaws(left side) underwent complete transection and the middle digit flexor digitorum profundus tendon in zone Ⅱ were repairedby Kessler methods as the experimental group. The normal right forepaws served as the control group. The tendons and tendon sheaths were harvested at 1, 7, 14, 21, 28and 56 days after repair(n=10). The expression patterns ofTGF-β1 wereanalyzed by in situ hybridization and immunohistochemistry staining methods. Results The in situ hybridization examination revealed thatTGF-β1 mRNA expression upregulated at 1 day, reached the peak levels at 1421 days and remained high levels up to 56 days in the experimental group. The expression ofTGF-β1 mRNA in control group was lowerthan that in the experimental group, showing statistically significant difference (Plt;0.05). The results of immunohistochemical staining was similar to that of in situ hybridization. Conclusion The normal tendon and tendon sheath cells are capable ofTGF-β1 production. The cytokine is activated in tendon wound condition. The upregulation of this cytokine in both tendon and tendon sheath cells are coincidence with both extrinsic and intrinsic mechanisms for tendonrepair.
To investigate the preventive effect of TGF-β1 neutral izing antibody on collagen production and adhesion formation of flexor tendon. Methods Tendon fibroblasts, epitenon tenocytes, and endotenon tenocytes were obtained from 6 New Zealand rabbit flexor tendons. Each cell culture was supplemented with 1 ng/mL of TGF-β along with increasing dose of TGF-β1 neutral izing antibody. Col I production was measured by enzyme-l inked immunoabsorbent assay after 3 days. Eighty-four adult New Zealand White rabbits forepaws underwent sharp transection of middle digit flexor digitorumprofundus and immediate repair. Then the rabbits were divided into three groups: the normal saline (NS group, n=36), 1.0 µg/ mL TGF-β1neutral izing antibody (1.0 µg/mL TGF-β1group, n=36) and 2.0 µg/mL TGF-β1 neutral izing antibody (2.0 µg/mL TGF-β1 group, n=12) were injected in tendon sheath respectively. Tendons were harvested at 4 and 8 weeks for biomechanics testing, histological evaluation and scanning electron microscope observation. Tendons were harvested at 1, 2, 4 and 8 weeks to determine the mRNA expression of TGF-β1 and Col I by in situ hybridization. Results ELISA exhibed that TGF-β1 enhanced Col I production and the neutral izing antibody significantly inhibited TGF-β1-induced Col I production in all 3 cell culture with a dose-dependent. At 4 and 8 weeks after operation the gl iding excursion of the tendon and the simulated active flexion in NS group were less than that of 1.0 µg/mL TGF-β1 group and 2.0 µ g/mL TGF-β1 group. There was significant difference between NS group and 1.0 µ g/mL TGF-β1 group, 2.0 µ g/mL TGF-β1 group (P lt; 0.05). The tendon anastomosis breaking strength showed no significant differences among three groups (P gt; 0.05). Scanning electron microscope and histological observation showed that collagen fibers arranged irregularly in NS group, but arranged regularly in 1.0 µ g/mL TGF-β1 group and 2.0 µ g/mL TGF-β1group at 4 and 8 weeks after operation. The in situ hybridization results revealed that TGF-β1 and Col I mRNA expression in 1.0 µ g/mL TGF-β1 group was lower than that in NS group at each time. There was significant difference between two groups (P lt; 0.05). Conclusion TGF-β1neutral izing antibody can inhibit the function of the TGF-β1 effectively and prevent adhesion formation after the flexor tendon injured and repaired.
Objective By culturing tendon sheath fibroblasts, epitenon tenocytes and endotenon tenocytes of rabbits’ tendon in vitro, to study the effects of mannose-6-phosphate on transforming growth factor β (TGF-β) peptide and receptor expression, and to provide the experimental basis for preventing the tendon heal ing adhesion by mannose- 6-phosphate. Methods Eight adult New Zealand white rabbits, regardless of their gender and weighing 4.0-4.5 kg, were selected. Tendon sheath fibroblasts, epitenon tenocytes, and endotenon tenocytes were isolated from rabbit flexor tendon and cultured separately. All 3 cells were divided into 2 groups at random after cells were adjusted to a concentration of 4 × 104 per well and 1 × 104/mL. The first was the control group without supplementation. The experimental group was supplemented withmannose-6-phosphate. The expressions of TGF-β and TGF-β receptor were quantified with enzyme-l inked immunosorbent assay. The expression of TGF-β1 mRNA was also assessed with in situ hybridization and the expression of TGF-β1 was assessed with immunohistochemistry. Results The expressions of TGF-β and TGF-β receptor in experimental group were significantly lower than that in control group (P lt; 0.05). The expression levels of TGF-β1 and TGF-β2 decreased in descending order of tendon sheath fibroblasts (36.1%, 37.9%), epitenon tenocytes (31.0%, 32.1%), and endotenon tenocytes (31.2%, 27.0%). The expression levels of TGF-β3 decreased in descending order of endotenon tenocytes (42.5%), tendon sheath fibroblasts (41.2%), and epitenon tenocytes (33.3%). The expression levels of TGF-β receptor 1 and TGF-β receptor 2 decreased in descending order of epitenon tenocytes (29.9%, 26.2%), endotenon tenocytes (27.8%, 23.5%), and tendon sheath fibroblasts (23.1%, 20.0%). The expression levels of TGF-β receptor 3 decreased in descending order of endotenon tenocytes (26.1%), epitenon tenocytes (19.2%), and tendon sheath fibroblasts (15.8%). In experimental group, the positive expression of TGF-β1 mRNA and the expression level of intracellular TGF-β1 mRNA in all 3 tendon cells were significantly lower than those in the control group (P lt; 0.05). Immunohistochemical staining showed the expressions of TGF-β1 in all 3 tendon cells were significantly lower in theexperimental group than in the control group. Conclusion Mannose-6-phosphate can significantly decrease the expressions of TGF-β peptide, TGF-β receptor, and TGF-β1 mRNA. Modulation of mannose-6-phosphate levels may provide a mean of modulating the effects of TGF-β on adhesion formation in flexor tendon wound heal ing.
Objective To analyze the stabil ity and cl inical outcomes of arthroscopic anterior cruciate l igament (ACL) reconstruction with γ irradiated patellar tendon allograft compared with autograft. Methods From January 2004 to October 2007, 69 patients undergoing arthroscopic ACL reconstruction were prospectively randomized consecutively into two groups: group A (autograft, n=36) and group B (γ irradiated allograft, n=33). In group A, there were 30 males and 6 females with an average age of 30.1 years, including 30 cases of simple ACL rupture and 6 cases of ACL rupture with medial accessory l igament injury; ACL rupture was caused by sports in 28 cases, by traffic accident in 5 cases, and by others in 3 cases; and the time from injury to operation was 1.4 months on average. In group B, there were 26 males and 7 femaleswith an average age of 32.5 years, including 27 cases of simple ACL rupture and 6 cases of ACL rupture with medial accessory l igament injury; ACL rupture was caused by sports in 27 cases, by traffic accident in 4 cases, and by others in 2 cases; and the time from injury to operation was 1.5 months on average. There were no significant differences in general data between two groups (P gt; 0.05). The same arthroscopic technique was used in all ACL reconstructions done by the same surgeon. The cl inical outcome was evaluated and compared by general conditions, pivot shift test, Lachman test, KT-2000 arthrometer testing, Daniel’s one-leg hop test, International Knee Documental Committee (IKDC) scoring, Lysholm knee scoring scale, and Tegner activity score. Results All patients were followed up for 39.5 months (group A) and 37.6 months (group B). In group A, patella fracture occurred in 1 case and anterior knee pain in 2 cases postoperatively. No compl ication occurred in group B. The hospital ization times in groups A and B were (15.6 ± 2.4) days and (15.5 ± 1.5) days, respectively, showing no significant difference (P gt; 0.05). The operation time of group A was longer than that of group B and the fever time of group A was shorter than that of group B, showing significant differences (P lt; 0.05). At the final follow-up, there were significant differences (P lt; 0.05) in Lachman test and the pivot shift test between two groups, between pre- and post-operation; there were no significant differences (P gt; 0.05) in Daniel’s one-leg hop test, the IKDC, Lysholm, and Tegner activity scores between two groups, however, there was a decreased trend in the functional and activity levels in group B. And there was significant difference between pre- and post-operation (P lt; 0.05). At the final follow-up, the differences between normal side and affected side were (2.4 ± 0.6) mm in group A and (5.5 ± 3.6) mm in group B, showing significant difference (P lt; 0.05). There was significant difference in tibial advancement between pre- and post-operation (P lt; 0.05). Conclusion The functional and activity level of the knee after ACL reconstruction with autograft and γ irradiated patellar tendon allograft were similar, but anterior and rotational stabil ity of the involved knee decreases significantly in the group with γ irradiated patellar tendon allograft.
Objective To explore effect of platelet-rich plasma (PRP) on rabbit BMSCs differentiation into SC in vitro and to detect secretory function of the differentiated cells. Methods BMSCs isolated from 5 mL bone marrow of 2-montholdNew Zealand white rabbit were cultured using density gradient centrifugation and adherence screening methods. A total of 5 mL femoral vein blood was obtained from rabbits to prepare PRP using modified Appel method. The BMSCs at passage 3 were divided into three groups: the combined induction group, in which the cells were cultured with complete medium containing PRP after β-mercaptoethanol and retinoic acid inductions; the simple induction group, in which the cells were cultured with L-DMEM complete medium without PRP afterβ-mercaptoethanol and retinoic acid induction; the control group, in which the cells were cultured with L-DMEM complete medium. Growth condition of the cells in each group was observed using inverted microscope. cell identification was conducted at 4, 7, 9, and 11 days after culture using immunofluorescence staining method, and NGF content was detected by ELISA method. NGF mRNA expression was assayed by RT-PCR 11 days after culture. Results Most cells in the combined induction and the simple induction group were out of BMSCs typical cell morphology 4 days after culture; cells in the combined induction group were out of BMSCs typical cell morphology and changed into cells resembl ing SC in terms of morphology and contour 9 days after culture. The cells in the control group showed no obvious morphological changes. S-100 protein expression in the cells was evident in the combined induction and the simple induction group at each time point after induced culture; the positive expression rate of cell in each group was increased over time, and significant differences were evident between the combined induction group and the simple induction group 7, 9, and 11 days after culture (P lt; 0.05). Control groupwas negative for the expression. There were significant differences when comparing the control group with the combined induction group or the simple induction group in terms of NGF content at each time point (P lt; 0.01). Significant difference was evident between the combined induction group and the simple induction group 7, 9, and 11 days after culture (P lt; 0.05), and no significant difference was noted 4 days after culture (P gt; 0.05). Relative intensity of NGF mRNA expression in the combined induction group was greater than that of the simple induction group 11 days after culture (P lt; 0.05). Conclusion Rabbit BMSCs can differentiate into SC excreting NGF under certain induction condition in vitro. PRP can remarkably promote BMSCs differentiation into SC.