west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "XIAO Zhu" 1 results
  • Wedelolactone alleviates lipopolysaccharide-induced pyroptosis of alveolar epithelial cells by inhibiting AMPK/NLRP3/Caspase-1 signaling pathway

    Objective To investigate the effects of wedelolactone (WEL) on lipopolysaccharide (LPS)-induced pyroptosis of alveolar epithelial cells and AMP-activated protein kinase/nucleotide binding oligomeric domain like receptor 3 (NLRP3)/cysteinyl aspartate specific proteinase-1 (Caspase-1) signaling pathway. Methods Human lung epithelial cells BEAS-2B were treated with 5 - 200 μmol/L wedelolactone, and cell activity was detected using MTT assay. The alveolar epithelial cells were divided into control group, lipopolysaccharide group (LPS group), 10 μmol/L wedelolactone group (WEL-L group), 20 μmol/L wedelolactone group (WEL-M group), 40 μmol/L wedelolactone group (WEL-H group), 40 μmol/L wedelolactone+10 μmol/L AMPK inhibitor Compound C group (WEL-H+Compound C group), and 20 μmol/L Caspase-1 inhibitor Z-YVAD-FMK group (Z-YVAD-FMK group). Transmission electron microscopy was applied to observe the microstructure of cells. ELISA was applied to detect levels of inflammatory factors such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-8 (IL-8). Immunofluorescence was applied to detect Caspase-1 and gasdermin family proteins (DGSDMD). Western blot was applied to detect protein expression levels of AMPK, NLRP3, and Caspase-1. Results Wedelolactone concentrations of 10, 20 and 40 μmol/L were selected for follow-up experiments. Compared with Control group, LPS group showed decreased cell activity, severe damage, cell contraction, mitochondrial ridge breakage and decreased number, increased levels of TNF-α, IL-1β, IL-8 and GSDMD, NLRP3, Caspase-1 expression, and decreased p-AMPK/AMPK expression (P<0.05). Wedelolactone treatment could significantly improve LPS-induced pyrosis of alveolar epithelial cells (P<0.05). Compound C could partially reverse the effect of wedelactone on LPS-induced pyrodeath of alveolar epithelial cells (P<0.05). Z-YVAD-FMK treatment also significantly improved LPS-induced pyroptosis of alveolar epithelial cells (P<0.05). Conclusion Wedelolactone can inhibit LPS-induced pyroptosis of pulmonary alveolar epithelial cells by inhibiting AMPK/NLRP3/Caspase-1 signaling pathway.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content