Abstract: Objective To investigate the acute cardioprotective effect of 17b-estradiol (17b-E2) against severe myocardial ischemia/reperfusion (I/R) injury in rabbits and the mechanism of the effect. Methods We established the model of myocardial I/R in vivo by occluding the left anterior descending coronary artery of the rabbits (who underwent coronary occlusion for 40 minutes followed by 3 hours of reperfusion). Twentyfour New Zealand white male rabbits were randomly divided into two groups with 12 in each group. Before coronary occlusion, 1 ml of ethanol or 17b-E2 at 10 μg/kg was administered intravenously to the rabbits in the control group and the experimental group respectively. The serum levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were measured by enzymelinked immunosorbent assay (ELISA) at the following time points: before occlusion, 40 minutes after occlusion, 1 hour, 2 hours and 3 hours after reperfusion. Activation of p38 mitogen activated protein kinase(MAPK) was determined by Western blotting analysis, and apoptosis of cardiocytes was identified by terminal deoxynucleotidlyl transferase mediated deoxyuridinebiotin dUTP Nick End Labeline (TdT)mediated dNTP nick end labeling (TUNEL) staining. Results During myocardial ischemia, TNF-α decreased significantly in the experimental group compared with the control group (F=0.007,P=0.001), while there was no difference in IL-6 between the two groups (F=0.616,P=0.095). During the process of reperfusion, the levels of TNF-α and IL-6 in the experimental group were significantly lower than those in the control group (Plt;0.01). Besides, the activation of p38 MAPK and apoptotic index for the experimental group were also lower (45.07%±2.73% vs. 61.25%±2.41%, t=-15.398, P=0.000; 11.21%±3.85% vs. 22.02%±4.49%, t=-6.332, P=0.000). Conclusion The cardioprotective effect of 17b-E2 against myocardial I/R may be attributed to its antiinflammatory and antiapoptotic properties, which is probably associated with the inhibition of 17bE2 on p38MAPK activity.