west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "XU Xinxi" 4 results
  • Progress in numerical simulation and experimental study on inhalable particles deposition in human respiratory system

    Inhalable particles deposition in the human respiratory system is the main cause of many respiratory and cardiovascular diseases. It plays an important role in related disease prevention and treatment through establishing computer or external entity models to study rules of particle deposition. The paper summarized and analyzed the present research results of various inhalable particle deposition models of upper respiratory tract and pulmonary area, and expounded the application in the areas of disease inducement analysis, drug inhale treatment etc. Based on the review, the paper puts forward the problems and application limitations of present research, especially pointing out future emphasis in development directions. It will have a value of reference guidance for further systematic and in-depth study on the inhalable particle deposition simulation, experiment and application.

    Release date:2017-08-21 04:00 Export PDF Favorites Scan
  • Experimental research on the effect of functional residual capacity on the deposition of inhalable particles in human alveoli region

    Research on the deposition of inhalable particles in the alveoli of the lungs is important to the causes, development for common respiratory diseases such as emphysema, and even the optimization of clinical treatment and prevention programs of them. In this paper, an in vitro experimental model was established to simulate the deposition of terminal bronchioles and pulmonary acinus particles. The deposition rate of inhalable particles with different particle sizes in the pulmonary acinus was studied under different functional residual capacity. The results showed that the particle diameter was an important factor affecting the deposition of particles in the lung alveoli. Particles with 1 μm diameter had the highest deposition rate. With the functional residual capacity increasing, particulate deposition rate significantly reduced. The results of this study may provide data support and optimization strategy for target inhalation therapy of respiratory diseases such as emphysema and pneumoconiosis. The established model may also provide a feasible in vitro experimental model for studying the deposition of inhalable particles in the pulmonary alveoli.

    Release date:2018-08-23 05:06 Export PDF Favorites Scan
  • Progress on numerical simulation of the deposition of inhaled particles in human pulmonary acinus region

    The inhalation and deposition of particles in human pulmonary acinus region can cause lung diseases. Numerical simulation of the deposition of inhaled particles in the pulmonary acinus region has offered an effective gateway to the prevention and clinical treatment of these diseases. Based on some important affecting factors such as pulmonary acinar models, model motion, breathing patterns, particulate characteristics, lung diseases and ages, the present research results of numerical simulation in human pulmonary acinus region were summarized and analyzed, and the future development directions were put forward in this paper, providing new insights into the further research and application of the numerical simulation in the pulmonary acinus region.

    Release date:2019-06-17 04:41 Export PDF Favorites Scan
  • Numerical simulation on the deposition characteristics of inhaled particles in human pulmonary acinus region under the influence of multi-factors

    Research on the deposition of inhaled particles in human pulmonary acinus region is important to the pathogenesis investigation, prevention and treatment of lung diseases. Most of the current research focus on the final deposition fraction of inhaled particles in human acinar region, but little is involved in their dynamic deposition characteristics. In this paper, five multi-alveolar models, G3−G7, were built. The evaluation parameter 1/4 deposition time was introduced to study the particle deposition speed. The deposition characteristics of particles in the diameter ranging 0.1−5 μm were numerically simulated and summarized under the influence of factors such as the generation and structure of model, particle diameter and respiratory mode, shedding some new light on the further research of transport of inhaled particles. The results showed that the generation and structure of model had a significance effect on the deposition of particles. 0.1 μm particles were dominated by Brownian diffusion, which experienced a high deposition fraction, a fast deposition speed and a logarithmic deposition curve, while 5 μm particles were dominated by gravitational sedimentation, with a high deposition fraction, a fast deposition speed and an S-shaped deposition curve. The deposition of 0.3−1 μm particles were influenced greatly by convention and varied with the change of respiratory mode. The research methods and results in this paper can provide theoretical basis and data support for the further exploration of the mechanism, prevention and treatment of lung diseases.

    Release date:2020-12-14 05:08 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content