ObjectiveTo study the local vascular remodeling, inflammatory response, and their correlations following acute spinal cord injury (SCI) with different grades, and to assess the histological changes in SCI rats.MethodsOne hundred and sixteen adult female Sprague Dawley rats were randomly divided into 4 groups (n=29). The rats in sham group were received laminectomy only. A standard MASCIS spinal cord compactor was applied with drop height of 12.5, 25.0, or 50.0 mm to establish the mild, moderate, or severe SCI model, respectively. Quantitative rat endothelial cell antigen 1 (RECA1) and CD68 positive areas and the correlations were studied by double immunofluorescent (DIF) staining at 12 hours, 24 hours, 3 days, 7 days, and 28 days following SCI. Moreover, qualitative neurofilament-H (NF-H) and glial fibrillary acidic protein (GFAP) positive glial cells were studied by DIF staining at 28 days. ELISA was used to detect the levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6 in spinal cord homogenates at 12 hours, 24 hours, and 3 days, and the correlations between TNF-α, IL-1β, or IL-6 levels and microvascular density (RECA1) were accordingly studied. Moreover, the neural tissue integrity and neuron damage were assessed by HE staining at 12 hours, 24 hours, 3 days, 7 days, and 28 days, and Nissl’s staining at 28 days following SCI, respectively.ResultsDIF staining revealed that the ratio of RECA1 positive area was the highest in moderate group, higher in mild and severe groups, and the lowest in sham group with significant differences between groups (P<0.05). The ratio of CD68 positive area was the highest in severe group, higher in moderate and mild groups, and the lowest in sham group with significant differences between groups (P<0.05), except the comparisons between mild and moderate groups at 24 hours and 28 days after SCI (P>0.05). There was no significant correlation between the RECA1 and CD68 expressions in sham group at different time points (P>0.05). At 12 and 24 hours after SCI, the RECA1 and CD68 expressions in mild and moderate groups showed significant positive correlations (P<0.05), while no significant correlation was found in severe group (P>0.05). No significant correlations between the RECA1 and CD68 expressions was shown in all SCI groups at 3 days and in severe group at 7 days (P>0.05), while the negative correlations were shown in mild and moderate groups at 7 days, and in all SCI groups at 28 days (P<0.05). In mild, moderate, and severe groups, the axons became disrupted, shorter and thicker rods-like, or even merged blocks with increased injury, while the astrocytes decreased in number, unorganized and condensed in appearance. ELISA studies showed that TNF-α, IL-1β, and IL-6 levels in sham group were significantly lower than those in other 3 groups at different time points (P>0.05). The differences in TNF-α, IL-1β, and IL-6 levels between SCI groups at different time points were sinificant (P<0.05), except IL-1β levels between the mild and moderate groups at 12 hours (P>0.05). Three inflammatory factors were all significantly correlated with the microvascular density grades (P<0.05). Histological analysis indicated that the damage to spinal cord tissue structure correlated with the extent of SCI. In severe group, local hemorrhage, edema, and infiltration of inflammatory cells were found the most drastic, the grey/white matter boundary was disappeared concurrently with the formation of cavity and shortage of normal neurons.ConclusionIn the acute stage following mild or moderate SCI, progressively aggravated injury result in higher microvessel density and increased inflammation. However, at the SCI region, the relation between microvessel density and inflammation inverse with time in the different grades of SCI. Accordingly, the destruction of neural structures positively relate to the grades of SCI and severity of inflammation.
Objective To study the effectiveness of long segment fixation combined with vertebroplasty (LSF-VP) for severe osteoporotic thoracolumbar compressive fractures with kyphosis deformity. Methods Between March 2006 and May 2012, a retrospective analysis was made on the clinical data of 48 cases of severe osteoporotic thoracolumbar compressive fractures with more than 50% collapse of the anterior vertebral body or more than 40 ° of sagittal angulation, which were treated by LSF-VP in 27 cases (LSF-VP group) or percutaneous kyphoplasty (PKP) in 21 cases (PKP group). All patients suffered from single thoracolumbar vertebral compressive fracture at T11 to L2. There was no significant difference in gender, age, spinal segment, and T values of bone mineral density between 2 groups (P gt; 0.05). The effectiveness of the treatment was appraised by visual analogue scale (VAS), Cobb angle of thoracolumbar kyphosis, height of anterior/posterior vertebral body, and compressive ratio of vertebrae before and after operations. Results The LSF-VP group had longer operation time, hospitalization days, and more bone cement injection volume than the PKP group, showing significant differences (P lt; 0.05). Intraoperative blood loss in LSF-VP group ranged from 220 to 1 050 mL (mean, 517 mL). No pulmonaryor cerebral embolism or cerebrospinal fluid leakage was found in both groups. Asymptomatic bone cement leakage was found in 3 cases of LSF-VP group and 2 cases of PKP group. The patients were followed up for 16-78 months (mean, 41.1 months) in LSF-VP group, and 12-71 months (mean, 42.1 months) in PKP group. No fixation failure such as loosened or broken pedicle screw was found in LSF-VP group during the follow-up, and no re-fracture or adjacent vertebral body fracture was found. Two cases in PKP group at 39 and 56 months after operation respectively were found to have poor maintenance of vertebral height and loss of rectification (Cobb angle was more than 40º) with recurrence of pain, which were treated by second surgery of LSF-VP; another case had compressive fracture of the adjacent segment and thoracolumbar kyphosis at 16 months after operation, which was treated by second surgery of LSF-VP. There were significant differences in the other indexes between each pair of the three time points (P lt; 0.05), except the Cobb angle of thoracolumbar kyphosis, and the height of posterior vertebral body between discharge and last follow-up in LSF-VP group, and except the Cobb angle of thoracolumbar kyphosis and compressive ratio of bertebrae between discharge and last follow-up in PKP group (P gt; 0.05). After operation, the other indexes of LSF-VP group were significantly better than those of PKP group at each time point (P lt; 0.05), except the VAS score and the height of posterior vertebral body at discharge (P gt; 0.05). Conclusion The effectiveness of LSF-VP is satisfactory in treating severe osteoporotic thoracolumbar compressive fractures with kyphosis deformity. LSF-VP can acquire better rectification of kyphosis and recovery of vertebral body height than PKP.
Objective To study the osteogenic effects of a new type of peptides anchored aminated-poly-D, L-lactide acid (PA/PDLLA) scaffold in repairing femoral defect in rats. Methods The PDLLA scaffolds were treated by ammonia plasma and subsequent anchor of Gly-Arg-Gly-Asp-Ser (GRGDS) peptides via amide linkage formation. Thus PA/PDLLA scaffolds were prepared. The bone marrow was harvested from the femur and tibia of 4 4-week-old Sprague Dawley (SD) rats, and bone marrow mesenchymal stem cells (BMSCs) were isolated and cultured by whole bone marrow adherence method. BMSCs-scaffold composites were prepared by seeding osteogenic-induced BMSCs at passages 3-6 on the PA/PDLLA and PDLLA scaffolds. The right femoral defects of 8 mm in length were prepared in 45 adult male SD rats (weighing, 350-500 g) and the rats were divided into 3 groups (n=15) randomly. BMSCs-PA/PDLLA (PA/PDLLA group) or BMSCs-PDLLA (PDLLA group) composites were used to repair defects respectively, while defects were not treated as blank control (blank control group). General state of the rats after operation was observed. At 4, 8, and 12 weeks after operation, general, radiological, histological, micro-CT observations and real-time fluorescent quantitative PCR were performed. Results Two rats died after operation, which was added; the other rats survived to the end of the experiment. At each time point after operation, general and radiological observations showed more quick and obvious restoration in PA/PDLLA group than in PDLLA group; no bone repair was observed in blank control group. The X-ray scores were the highest in PA/PDLLA group, higher in PDLLA group, and the lowest in blank control group; showing significant difference in multiple comparison at the other time (P lt; 0.05) except between blank control group and PDLLA group at 4 weeks (P gt; 0.05). The X-ray scores showed an increasing trend in PDLLA group and PA/PDLLA group with time (P lt; 0.05). Histological and micro-CT observations showed the best osteogenesis in PA/PDLLA group, better in PDLLA group, and worst in blank control group. Comparison between groups had significant differences (P lt; 0.05) in bone mineral density, bone volume/total volume of range of interest, trabecular number, and structure model index. Significant differences (P lt; 0.05) were found in the expression levels of osteogenesis-related genes, such as osteocalcin, alkaline phosphatase, collagen type I, bone morphogenetic protein 2, and osteopontin when compared PA/PDLLA group with the other groups by real-time fluorescent quantitative PCR analysis. Conclusion The PA/PDLLA scaffolds can accelerate the repair of femoral defects in rats.
Objective To study the feasibil ity of preparation of the poly-D, L-lactide acid (PDLLA) scaffolds treated by ammonia plasma and subsequent conjugation of Gly-Arg-Gly-Asp-Ser (GRGDS) peptides via amide l inkage formation. Methods PDLLA scaffolds (8 mm diameter, 1 mm thickness) were prepared by solvent casting/particulate leaching procedure and then treated by ammonia plasma. The consequent scaffolds were labeled as aminated PDLLA (A/ PDLLA). The pore size, porosity, and surface water contact angle of groups 0 (un-treated control), 5, 10, and 20 minutes A/ PDLLA were measured. A/PDLLA scaffolds in groups above were immersed into the FITC labelled GRGDS aqueous solutionwhich contain 1-[3-(dimethylamino) propyl]-3-ethylcarbodiimide hydrochloride (EDC.HCl) and N-hydroxysuccinimide(NHS), the molar ratio of peptides/EDC.HCL /NHS was 1.5 ∶ 1.5 ∶ 1.0, then brachytely sloshed for 24 hours in roomtemperature. The consequent scaffolds were labelled as peptides conjugated A/PDLLA (PA/PDLLA). The scaffolds in groups 0, 5, 10, and 20 minutes A/PDLLA and groups correspondingly conjugation of peptides were detected using X-ray photoelectron spectroscopy (XPS). The scaffolds in groups of conjugation of peptides were measured by confocal laser scanning microscope and high performance l iquid chromatography (HPLC), un-treated and un-conjugated scaffolds employed as control. Bone marrow mesenchymal stem cells (BMSCs) from SD rats were isolated and cultured by whole bone marrow adherent culture method. BMSCs at the 3rd–6th passages were seeded to the scaffolds as follows: 20 minutes ammonia plasma treatment (group A/PDLLA), 20 minutes ammonia plasma treatment and conjugation of GRGDS (group PA/PDLLA), and untreated PDLLA control (group PDLLA). After 16 hours of culture, the adhesive cells on scaffolds and the adhesive rate were calculated. After 4 and 8 days of culture, the BMSCs/scaffold composites was observed by scanning electron micorscope (SEM). Results No significant difference in pore size and porosity of PDLLA were observed between before and after ammonia plasma treatments (P gt; 0.05). With increased time of ammonia plasma treatment, the water contact angle of A/PDLLA scaffolds surface was decreased, and the hydrophil icity in the treated scaffolds was improved gradually, showing significant differences when these groups were compared with each other (P lt; 0.001). XPS results indicated that element nitrogen appeared on the surface of PDLLA treated by ammonia plasma. With time passing, the peak N1s became more visible, and the ratio of N/C increased more obviously. AfterPDLLA scaffolds treated for 0, 5, 10, and 20 minutes with ammonia plasma and subsequent conjugation of peptides, the ratio of N/C increased and the peak of S2p appeared on the surface. The confocal laser scanning microscope observation showed that the fluorescence intensity of PA/PDLLA scaffolds increased obviously with treatment time. The amount of peptides conjugated for 10 minutes and 20 minutes PA/PDLLA was detected by HPLC successfully, showing significant differences between 10 minutes and 20 minutes groups (P lt; 0.001). However, the amount of peptides conjugated in un-treated control and 0, 5 minutes PA/PDLLA scaffolds was too small to detect. After 16 hours co-culture of BMSCs/scaffolds, the adhesive cells and the adhesive rates of A/PDLLA and PA/PDLLA scaffolds were higher than those of PDLLA scaffolds, showing significant difference between every 2 groups (P lt; 0.01). Also, SEM observation confirmed that BMSCs proliferation in A/PDLLA and PA/PDLLA groups was more detectable than that in PDLLA group, especially in PA/PDLLA group. Conclusion Ammonia plasma treatment will significantly increase the amount of FITC-GRGDS peptides conjugated to surface of PDLLA via amide l inkage formation. This new type of biomimetic bone has stablized bioactivities and has proved to promote the adhesion and proliferation of BMSCs in PDLLA.