west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "XUYun" 2 results
  • Study of the Influence of Uniform Transverse Magnetic Field on the Dose Distribution of High Energy Electron Beam Using Monte Carlo Method

    In the present work, Monte Carlo simulations were employed to study the characteristics of the dose distribution of high energy electron beam in the presence of uniform transverse magnetic field. The simulations carried out the transport processes of the 30 MeV electron beam in the homogeneous water phantom with different magnetic field. It was found that the dose distribution of the 30 MeV electron beam had changed significantly because of the magnetic field. The result showed that the range of the electron beam was decreased obviously and it formed a very high dose peak at the end of the range, and the ratio of maximum dose to the dose of the surface was greatly increased. The results of this study demonstrated that we could change the depth dose distribution of electron beam which is analogous to the heavy ion by modulating the energy of the electron and magnetic field. It means that using magnetic fields in conjunction with electron radiation therapy has great application prospect, but it also has brought new challenges for the research of dose algorithm.

    Release date: Export PDF Favorites Scan
  • A Fitted Formula for Calculating Electron Beams Mean Energy in the Homogeneous Water Phantom

    Abstract: The hybrid pencil beam model (HPBM) is an effective algorithm for calculating electron dose distribution in radiotherapy. The mean energy distribution of incident electron beam in phantom is one of the factors that affect the calculation accuracy of HPBM, especially in field edge areas near the end of the electron range. A new fitted formula based on Monte Carlo (MC) simulation data for electron beams with energy range of 6-20MeV in the homogeneous water phantom is proposed in this paper. The precision of the fitted formula within the scope of the energy was evaluated by comparing the electron dose distribution of ECWG measured data with that obtained from HPBM which took the mean electron energy that calculated by the fitted formula and the existed empirical formula, respectively. The results showed that the accuracy of dose distribution that obtained by the mean electron energy calculated with the fitted formula increased about 1%.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content