west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "Xing Xiaoli" 2 results
  • Effects of butylphthalide on hydrogen peroxide induced retinal pigment epithelial cells injury

    ObjectiveTo investigate the protective effect of butylphenyphthalein (NBP) on RPE apoptosis induced by H2O2.MethodsThe human RPE cell line (human ARPE-19 cell line) were used as the experimental cells and were divided as control group, model group, NBP group. Complete medium was used in control group. The model group was stimulated with 200 μmol/L H2O2 for 2 h, and the cells were cultured in complete medium. The NBP group was cultured with 200 μmol/L H2O2 and 1 μmol/L NBP for 2 h. After changing the medium, complete medium was combined with 1 μmol/L NBP to continue the culture of the cells. Cell viability were detected by MTT assay while the morphology of RPE were observed by HE staining. Moreover, Hoechst 33258 was used to detect RPE cell apoptosis. Mitochondrial membrane potential (JC-1) staining were performed to monitor changes in cell membrane potential and the characteristic change of apoptosis in RPE cells. Furthermore, 2′,7′-Dichlorofluorescin diacetate (DCFH-DA) staining were used to analyze the effect of NBP treatment on the expression of ROS. The effect of NBP on the expression of Heme oxygenase-1(HO-1) was analyzed by cellular immunofluorescence and western blotting.ResultsThe results of MTT assay showed that the cells were cultured for 24 and 48 hours, cell viability of control group (t=17.710, 13.760; P<0.000 1, <0.000 1) and treatment group (t=4.857, 9.225; P=0.000 7, <0.000 1) were stronger than that of model group, and the difference was statistically significant. HE staining and Hoechst33258 staining showed that compared with the control group, the number of cells in the model group was significantly less, and the cell morphology was incomplete. Compared with the model group, the number of cells in the treatment group was significantly increased, and the cell morphology was better. The results of JC-1 assay showed that the number of apoptotic cells in the model group was significantly higher than that in the control group, and the number of apoptotic cells in the treatment group was significantly lower than that in the model group. DCFH-DA staining showed that the ROS accumulation in the model group was more than that in the control group, and the ROS accumulation in the treatment group was less than that in the model group. Immunostaining observation showed that the HO-1 fluorescence intensity of the cells in the treatment group was significantly higher than that of the control group, and the difference was statistically significant (t=10.270, P=0.000 5). Western blot analysis showed that NBP up-regulated the expression level of HO-1 in a time-dependent manner. The relative expression of HO-1 at 4, 8, and 12 h of NBP showed a clear increase trend compared with 0 h, and the difference was statistically significant (F=164.91, P<0.05).ConclusionsOxidative stress injury can down-regulate the viability of RPE cells and induce apoptosis. NBP can increase the antioxidant capacity of RPE cells, reduce cell damage and inhibit cell apoptosis by up-regulating HO-1 expression.

    Release date:2019-11-19 09:24 Export PDF Favorites Scan
  • Effect of dl-3-n-Butylphthalide on apoptosis of retinal müller cells induced by hydrogen peroxide

    ObjectiveTo observe the protective effect of dl-3-n-Butylphthalide (NBP) on apoptosis of retinal Müller cells induced by hydrogen peroxide (H2O2).MethodsHuman retinal Müller cells cultured in vitro were divided into normal control group, model group (H2O2 group) and experimental group (H2O2+NBP group). The cells in the H2O2 group and H2O2+NBP group were cultured with 200 μmol/L H2O2 for 2 h. Then the culture solution of the H2O2 group replace with complete medium and the H2O2+NBP group replace with complete medium containing 1 μmol/L NBP. The normal control group was a conventional cultured cells. Müller cells were identified by immunofluorescence staining. Hematoxylin-eosin (HE) staining was used to observe the apoptosis morphological changes. MTT assay was used to detect the activity of of retinal Müller cells after after 24 h and 48 h of NBP intervention. Hoechst33258 staining was used to observe the apoptosis. LIVE/DEAD ® cell activity/cytotoxicity kit was used to detect cell viability. Dichlorofluorescein diacetate (DCFH-DA) + endoplasmic reticulum (ER) red fluorescent probe (ER-Tracker Red) double staining was used to observe the expression level of reactive oxygen species (ROS) in ER of cells. One-way ANOVA combined with Dunnett statistical method were used for data analysis.ResultsHE staining showed that the number of cells in H2O2+NBP group was higher than that in H2O2 group. MTT assay showed that after 24 h and 48 h of NBP intervention, the differences in cell viability between the normal control group and the H2O2 group, the H2O2 group and the H2O2+NBP group were statistically significant (t=28.96, 3.658, 47.58, 20.33; P<0.001, 0.022). The results of Hoechst33258 showed that the nuclear nucleus of a few cells in the H2O2+NBP group was crescent-shaped and the nuclear fragmentation was reduced, and the blue fluorescence of the remaining cells was uniform. The LIVE/DEAD ® cell activity/cytotoxicity kit showed that the number of dead cells with red fluorescence in the H2O2 group increased significantly, and the number of viable cells with green fluorescence decreased significantly. In the H2O2+NBP group, the number of viable cells with green fluorescence increased, and the number of dead cells with red fluorescence decreased. The double staining results of DCFH-DA+ER-Tracker Red showed that the green fluorescence intensity of H2O2 group was significantly enhanced; the green fluorescence intensity of H2O2+NBP group was lower than that of H2O2 group.ConclusionNBP alleviates H2O2-induced apoptosis of human retinal Müller cells by inhibiting ROS production.

    Release date:2018-09-18 03:28 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content