Objective To investigate the validity of improving the femur’s mechanical characteristics by implanting calcium phosphate ceramic screws after removing dynamic hip screw (DHS). Methods The three dimensional finite element model of the femur was built based on the CT scanning of a normal male volunteer. Then the models of the femur with and without DHS were established. According to calcium phosphate ceramic screws with porosity and apparent elastic modulus, 80% and 0.1 GPa were set as group A, 50% and 1.0 GPa as group B, and 30% and 1.5 GPa as group C. Von Mises stress distribution and maximum stress were recorded when the joint was maximally loaded in a gait cycle. Results The Von Mises in normal femoral shaft was uniform; no phenomena of stress concentration was observed and the maximum stress located at the joint load-bearing site of the proximal femur. The stress concentration was observed in the femur without DHS, and the maximum stress located at the distal femur around the screw hole. By comparing several different calcium phosphate ceramic screws, the stress distribution of group B was similar to normal femur model, and the maximum stress located at the joint load-bearing site. The other screws of groups A and C showed varying degrees of stress concentration. Conclusion Implanting calcium phosphate ceramic screw can improve the mechanical characteristics of the femur after removing dynamic hip screw, and the calcium phosphate ceramic screw with 50% porosity and 1.0 GPa apparent elastic modulus is suitable for implanting.