目的:总结经鼻内窥镜下手术治疗管内段视神经损伤的疗效。方法:回顾性分析11例视神经损伤住院患者的临床资料。结果:行视神经减压术的11例患者中1例失访,7例有效,其中4例视力有较明显的提高。结论:经鼻内镜视神经减压术损伤小,并发症少,手术时间短,疗效满意。
Objective To investigate the experience of selective embolization combined with intraoperative internal carotid artery shunt for surgical treatment of carotid body tumor (CBT). Methods The data of 21 patients (22 sides) with CBT who underwent surgical resection from January 2002 to July 2012 in our hospital were retrospectively reviewed. The all patients’ conditions were fully assessmented and all patients were performed the carotid arteriography and superselective embolization treatment for the blood supply of tumor by with microcatheter on 2-3 days before operation,and then intraoperative internal carotid artery shunt and resection of carotid body tumors were performed. Results Surgical procedures were successfully performeded in all 21 patients (22 sides). Among them, 16 patients (17 sides) were taken carotid body tumor resected, 5 patients were taken carotid body tumor resected and internal carotid artery reconstruction (autogenous long saphenous vein were used in 3 patients, vascular prosthesis were used in 2 patients). The postoperative complications were found in 5 patients after anesthesia recovery, which included crooked tongue in 3 cases and facial numbness in 2 cases, and they were cured in 3 months. There were no cerebral infarction, hemiplegia, and death cases. All 21 patients were followed-up for a period from 2 months to 9 years(average 57 months), there was no tumor recurred. Conclusions Surgical resection is the first choice for treatment of carotid body tumor. The application of selective embolization and intraoperative internal carotid artery shunt for surgical treatment of carotid body tumor in complicated Shamblin Ⅲ stage is safe and effective.
Objective To investigate the antibiotic resistance distribution and profiles of multidrug resistant bacteria in respiratory intensive care unit ( RICU) , and to analyze the related risk factors for multidrug resistant bacterial infections. Methods Pathogens from79 patients in RICU from April 2008 to May 2009 were analyzed retrospectively. Meanwhile the risk factors were analyzed by multi-factor logistic analysis among three groups of patients with non-multidrug, multidrug and pandrug-resistant bacterialinfection. Results The top three in 129 isolated pathogenic bacteria were Pseudomonas aeruginosa ( 24. 0% ) , Staphylococcus aureus( 22. 5% ) , and Acinetobacter baumannii( 15. 5% ) . The top three in 76 isolated multidrug-resistant bacteria were Staphylococcus aureus ( 38. 9% ) , Pseudomonas aeruginosa ( 25. 0% ) , and Acinetobacter baumannii( 19. 4% ) . And the two main strains in 29 isolated pandrug-resistant bacteria were Pseudomonas aeruginosa ( 48. 3% ) and Acinetobacter baumannii ( 44. 8% ) . Multi-factor logistic analysis revealed that the frequency of admition to RICU, the use of carbapenem antibiotics, the time of mechanical ventilation, the time of urethral catheterization, and complicated diabetes mellitus were independent risk factors for multidrug-resistant bacterial infection( all P lt; 0. 05) . Conclusions There is a high frequency of multidrug-resistant bacterial infection in RICU. Frequency of admition in RICU, use of carbapenem antibiotics, time of mechanical ventilation, time of urethral catheterization, and complicated diabetes mellitus were closely related withmultidrug-resistant bacterial infection.
Objective To investigate the prognostic factors of severe chronic obstructive pulmonary disease ( COPD) in elderly patients, and to guide the clinical assessment and appropriate interventions. Methods A prospective cohort study was carried out from May 1993 to December 2010. A total of 178 elderly patients with severe COPD were recruited for baseline survey, and followed up for the living conditions, whether used non-invasive ventilation, and causes of death. A survival analysis was performed on all patients stratified by lung function. The significant factors on survival rate were analyzed. Results In this cohort the survival rates were 49% and 12% in five and ten years, respectively. The important factors for prognosis were age [ relative risk( RR) = 1. 043, 95% confidence intervals( 95% CI = 1. 010-1. 050] , forced expired volume in one second ( FEV1 , RR = 0. 019, 95% CI = 0. 007-0. 052) , FEV1% pred ( RR = 1. 045, 95% CI = 1. 012-1. 079) , lung function grade ( RR = 2. 542, 95% CI = 1. 310-4. 931) , body mass index ( BMI, RR= 0. 945, 95% CI = 0. 895-0. 952) , and pulmonary heart disease ( RR = 1. 872, 95% CI = 1. 188- 2. 959) . In severe COPD, non-invasive ventilation ( NIV, RR = 1. 167, 95% CI = 0. 041-1. 674) , pulmonary heart disease ( RR = 3. 805, 95% CI = 1. 336-10. 836) , FEV1 ( RR = 0. 081, 95% CI = 1. 001-1. 168) , and arterial partial of oxygen ( PaO2 , RR=0. 956, 95% CI =0. 920-0. 993) were the independent predictors.The patients using NIV had longer survival than those without NIV. The 5 and 10 years survival rate in the patients with NIV were 78% and 50% , much higher than those without ventilation which were 30% and 25% , respectively. In extremely severe COPD, FEV1 ( RR=1. 059, 95% CI =1. 015-1. 105) , arterial partial of carbon dioxide ( PaCO2 , RR=1. 037, 95% CI = 1. 001-1. 074) , age ( RR= 1. 054, 95% CI = 1. 013-1. 096) and pulmonary heart disease ( RR = 1. 892, 95% CI = 1. 125-3. 181) were the independent predictors. Conclusions Age, BMI, FEV1 , PaO2 , PaCO2 , pulmonary heart disease, and NIV were prognostic factors in elderly patients with severe COPD. The prognostic factors between severe and extremely severe COPD were not identical. Patients with severe COPD should be given early intervention, including progressive nutritional support, and long-term home oxygen therapy combining with NIV.
ObjectiveTo investigate the effect of ozone on oxidative stress and energy metabolism change of blood from aortic dissection (AD) patients for providing preliminary evidence of application of ozonated autohemotherapy (ozone-AHT) in AD patients. MethodsTwenty AD patients (16 males and 4 females with a mean age of 48.51±10.21 years) were consecutively included in the First Affiliated Hospital of Harbin Medical University from March 2016 to August 2016, and blood samples were collected from all participants and ozonized in vitro at different ozone concentrations (0 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, 160 μg/ml). Malondialdehyde (MDA), red blood cells (RBCs) superoxide dismutase (SOD), Na+-K+-ATP, 2,3-bisphosphoglyceric acid (2,3-DPG) at different ozone concentrations were evaluated by enzyme-linked immunosorbent assay (ELISA). ResultsIn the control group (0 μg/ml), the content of postoperative MDA was significantly higher than that of preoperation (P<0.05). The contents of postoperative SOD, Na+-K+-ATP and 2,3-DPG were significantly lower than that of preoperation (P<0.05). The content of MDA at the concentrations of 40 μg/ml, 60 μg/ml, 80 μg/ml group increased after the operation (P>0.05), and the SOD, Na+-K+-ATP, 2,3-DPG decreased compared with the preoperation (P>0.05). But all the values were not statistically significant at the concentrations of 40 μg/ml, 80 μg/ml and 160 μg/ml respectively between preoperation and postoperation (P>0.05). Compared with other concentration groups, the content of preoperative and postoperative MDA increased in the ozone group (160 μg/ml), and oppositely, the contents ofpreoperative and postoperative SOD, Na+-K+- ATP and 2,3-DPG decreased (P<0.05). Conclusion The concentrations of 40 to 80 μg/ml of ozone can improve the antioxidant capacity of erythrocyte membrane, reduce oxidative stress in blood samples of AD patients and improve the energy metabolism of erythrocyte membranes, so the concentration range of ozone is safe and feasible for the ozone-AHT of perioperative AD.
Integrated TOF-PET/MR is a multimodal imaging system which can acquire high-quality magnetic resonance (MR) and positron emission tomography (PET) images at the same time, and it has time of flight (TOF) function. The TOF-PET system usually features better image quality compared to traditional PET because it is capable of localizing the lesion on the line of response where annihilation takes place. TOF technology measures the time difference between the detectors on which the two 180-degrees-seperated photons generated from positron annihilation are received. Since every individual crystal might be prone to its timing bias, timing calibration is needed for a TOF-PET system to work properly. Three approaches of timing calibration are introduced in this article. The first one named as fan-beam method is an iterative method that measures the bias of the Gaussian distribution of timing offset created from a fan-beam area constructed using geometric techniques. The second one is to find solutions of the overdetermination equations set using L1 norm minimization and is called L1-norm method. The last one called L2-norm method is to build histogram of the TOF and find the peak, and uses L2 norm minimization to get the result. This article focuses on the comparison of the amount of the data and the calculation time needed by each of the three methods. To avoid location error of the cylinder radioactive source during data collection, we developed a location calibration algorithm which could calculate accurate position of the source and reduce image artifacts. The experiment results indicate that the three approaches introduced in this article could enhance the qualities of PET images and standardized uptake values of cancer regions, so the timing calibration of integrated TOF-PET/MR system was realized. The fan-beam method has the best image quality, especially in small lesions. In integrated TOF-PET/MR timing calibration, we recommend using fan-beam method.
Objective To establish the three diamension-model and to observe the contribution of endothelial progenitor cell (EPC) in the angiogenesis and its biological features. MethodsEPC was obtained from the rats’ peripheral blood. Its cultivation and amplification in vitro were observed, and the function of the cultural EPC in vitro was detected. The three diamension-model was established and analyzed. ResultsEPC was obtained from the peripheral blood successfully. The proliferation of the EPC which induced with VEGF(experimental group) was better than that without VEGF (control group) at every different phase (P<0.01). It was found that EPC grew into collagen-material from up and down in the three diamension-model, and its pullulation and infiltration into the collagen were seen on day 1 after cultivation. With the time flying, there were branch-like constructions which were vertical to the undersurface of collagen and interlaced to net each other. It showed that in experimental group the EPC grew fast, its infiltration and pullulation also were fast, the branch-like construction was thick. But in control group, the EPC grew slowly, infiltration and pullulation were slow, the branch-like construction was tiny and the depth of infiltration into collagen was superficial. The number of new vessels in experimental group was larger than that in the control group at every different phase (P<0.01). ConclusionRat tail collagen can induce EPC involved in immigration, proliferation and pullulation in angiogenesis. The three-diamension model of EPC can be used to angiogenesis research. VEGF can mobilize and induce EPC to promote the angiogenesis.
Objective To review the research progress of the feasibility of a new treatment method for atrophic rhinitis (ATR) based on tissue engineering technology (seed cells, scaffold materials, and growth factors), and provide new ideas for the treatment of ATR. MethodsThe literature related to ATR was extensively reviewed. Focusing on the three aspects of seed cells, scaffold materials, and growth factors, the recent research progress of ATR treatment was reviewed, and the future directions of tissue engineering technology to treat ATR were proposed. Results The pathogenesis and etiology of ATR are still unclear, and the effectiveness of the current treatments are still unsatisfactory. The construction of a cell-scaffold complex with sustained and controlled release of exogenous cytokines is expected to reverse the pathological changes of ATR, promoting the regeneration of normal nasal mucosa and reconstructing the atrophic turbinate. In recent years, the research progress of exosomes, three-dimensional printing, and organoids will promote the development of tissue engineering technology for ATR. ConclusionTissue engineering technology can provide a new treatment method for ATR.