Objective To study the analgesic effect of a new “cocktail” of local infiltration analgesia (LIA) with Deprosone after total hip arthroplasty (THA). Methods In a prospective randomized controlled study, 100 patients with hip joint disease requiring unilateral primary THA in West China Hospital of Sichuan University between January 2018 and December 2018 were enrolled and randomly divided into observation group and control group, with 50 cases in each group. There was no significant difference in age, gender, operative side, disease type, body mass index, American Society of Anesthesiologists (ASA) classification, preoperative rest and activity visual analogue scale (VAS) score, hip Harris score (HHS), quality of life scale (SF-12) score, and other general data between the two groups (P>0.05). The patients in the observation group were treated with a new “cocktail” LIA around the hip joint before suturing the incision, and the drug formula was ropivacaine 200 mg, Diprospan 1 mL, morphine 10 mg, and added normal saline to 80 mL; the patients in the control group were not treated with LIA. The operation time, postoperative hospital stay, the amount of morphine used during hospitalization, and the range of motion of hip joint at discharge were recorded, and the complications were counted. The VAS score at rest and activity, HHS score, and SF-12 score [physiological score (PCS) and psychological score (MCS)] of the hip joint were recorded before and after operation, and the postoperative analgesic effect and the recovery of hip joint function were evaluated. Results There was no significant difference in the operation time between the two groups (P>0.05), and the postoperative hospital stay in the observation group was significantly shorter than that in the control group (P<0.05). The postoperative morphine consumption in the observation group was significantly less than that in the control group (P<0.05), and the total morphine consumption in the observation group was less than that in the control group during hospitalization, but the difference was not significant (P>0.05). Patients in both groups were followed up to 6 months after operation. The resting VAS scores of the observation group were significantly lower than those of the control group at 2, 6, 12 hours after operation and in the morning and afternoon of the first day after operation, and the active VAS scores of the observation group were significantly lower than those of the control group at 6, 12 hours after operation and in the morning of the first day after operation, and the differences were significant (P<0.05). There was no significant difference in the resting and active VAS scores between the two groups on the day of discharge and at 3 and 6 months after operation (P>0.05). At discharge, the flexion range of motion of hip joint in the observation group was significantly greater than that in the control group (P<0.05), but there was no significant difference in the abduction range of motion of hip joint between the two groups (P>0.05). There was no significant difference in HHS score and SF-12 score between the two groups at 3 and 6 months after operation (P>0.05). There was no significant difference in analgesic satisfaction and functional satisfaction between the two groups at last follow-up (P>0.05). There was no complication such as skin pruritus, superficial and deep infection of incision, skin necrosis, deep venous thrombosis of lower extremity, and pulmonary embolism in both groups. There was no significant difference in the incidence of complications such as nausea and vomiting, urine retention, fat liquefaction of incision, local hematoma, and large fluctuation of blood sugar between the two groups (P>0.05). ConclusionThe new “cocktail” LIA with Diprospan can effectively reduce the early postoperative pain of THA, reduce the dosage of opioids, shorten the length of hospital stay, and is conducive to the early functional rehabilitation of patients.
Objective To investigate the effectiveness of LARS ligament and three-dimensional (3D) printed prosthesis on the combined reconstruction of radial hemicarpal joint after distal radius tumor resection. Methods The clinical data of 12 patients with combined reconstruction of radial hemicarpal joint with LARS ligament and 3D printed prosthesis after distal radius tumor resection between September 2017 and March 2021 were retrospectively analyzed. There were 7 males and 5 females with an average age of 41.8 years (range, 19-63 years). There were 8 cases on the left side and 4 cases on the right side, and 10 cases of giant cell tumor of bone and 2 cases of osteosarcoma. The disease duration ranged from 1 to 20 months, with an average of 8.1 months. The osteotomy length, operation time, and intraoperative blood loss were recorded, and the wrist function was evaluated by Mayo wrist score and Musculoskeletal Tumor Society (MSTS) score before and after operation. The grip strength of the affected limb was expressed by the percentage of grip strength of the healthy upper limb, and the range of motion (ROM) of the wrist joint was measured, including extension, flexion, radial deviation, and ulnar deviation; the bone ingrowth and osseointegration at the bone-prosthesis interface of the wrist joint were observed by radiographic follow-up; the possible wrist complications were recorded. ResultsAll 12 patients successfully completed the operation. The osteotomy length was 5.0-10.5 cm (mean, 6.8 cm), and the operation time was 180-250 minutes (mean, 213.8 minutes). The intraoperative blood loss was 30-150 mL (mean, 61.7 mL). All patients were followed up 11-52 months (mean, 30.8 months). Radiographic follow-up showed that bone ingrowth and osseointegration at the bone-prosthesis interface were observed in all patients, and biological fixation was gradually achieved. During the follow-up, the stability, motor function, and ROM of the wrist joint were good. There was no complication such as arthritis, subluxation, prosthesis loosening, and infection, and no tumor recurrence and metastasis. At last follow-up, the Mayo score was 82.1±5.4, and MSTS score was 27.5±1.5, which were significantly improved when compared with those before operation (48.8±13.5, 16.4±1.4; t=−10.761, P<0.001; t=−26.600, P<0.001). The grip strength of the affected side was 59%-88% of that of the healthy side, with an average of 70.5%. The ROM of wrist joint were 55°-80° (mean, 65.42°) in extension, 35°-60° (mean, 44.58°) in flexion, 10°-25° (mean, 17.92°) in radial deviation, 10°-25° (mean, 18.33°) in ulnar deviation. Conclusion The combined application of LARS ligament and 3D printed prosthesis is an effective way to reconstruct bone and joint defects after distal radius tumor resection. It can improve the function of wrist joint, reduce the incidence of complications, and improve the stability of wrist joint.
Objective To fabricate a novel composite scaffold with acellular demineralized bone matrix/acellular nucleus pulposus matrix and to verify the feasibility of using it as a scaffold for intervertebral disc tissue engineering through detecting physical and chemical properties. Methods Pig proximal femoral cancellous bone rings (10 mm in external diameter, 5 mm in internal diameter, and 3 mm in thickness) were fabricated, and were dealed with degreasing, decalcification, and decellularization to prepare the annulus fibrosus phase of scaffold. Nucleus pulposus was taken from pig tails, decellularized with Triton X-100 and deoxycholic acid, crushed and centrifugalized to prepare nucleus pulposus extracellular mtrtix which was injected into the center of annulus fibrosus phase. Then the composite scaffold was freeze-dryed, cross-linked with ultraviolet radiation/carbodiimide and disinfected for use. The scaffold was investigated by general observation, HE staining, and scanning electron microscopy, as well as porosity measurement, water absorption rate, and compressive elastic modulus. Adipose-derived stem cells (ADSCs) were cultured with different concentrations of scaffold extract (25%, 50%, and 100%) to assess cytotoxicity of the scaffold. The cell viability of ADSCs seeded on the scaffold was detected by Live/Dead staining. Results The scaffold was white by general observation. The HE staining revealed that there was no cell fragments on the scaffold, and the dye homogeneously distributed. The scanning electron microscopy showed that the pore of the annulus fibrosus phase interconnected and the pore size was uniform; acellular nucleus pulposus matrix microfilament interconnected forming a uniform network structure, and the junction of the scaffold was closely connected. The novel porous scaffold had a good pore interconnectivity with (343.00 ± 88.25) µm pore diameter of the annulus fibrosus phase, 82.98% ± 7.02% porosity and 621.53% ± 53.31% water absorption rate. The biomechanical test showed that the compressive modulus of elasticity was (89.07 ± 8.73) kPa. The MTT test indicated that scaffold extract had no influence on cell proliferation. Live/Dead staining showed that ADSCs had a good proliferation on the scaffold and there was no dead cell. Conclusion Novel composite scaffold made of acellular demineralized bone matrix/acellular nucleus pulposus matrix has good pore diameter and porosity, biomechanical properties close to natural intervertebral disc, non-toxicity, and good biocompatibility, so it is a suitable scaffold for intervertebral disc tissue engineering.
Objective To evaluate the influence of PKH26 labeling on the biological function of the goat nucleus pulposus cells and the biological function of seeded cells in nude mice by in vivo imaging techonology. Methods Primary nucleus pulposus cells were isolated by enzymatic digestion from the nucleus pulposus tissue of the 1-year-old goat disc. The nucleus pulposus cells at passage 1 were labeled with PKH26 and the fluorescent intensity was observed under the fluorescence microscopy. The labeled cells were stained with toluidine blue and collagen type II immunocytochemistry. The cells viability and proliferation characteristics were assessed by trypan blue staining and MTT assay, respectively. Real-time fluorescent quantitative PCR was used to detect the gene expressions of collagen types I and II, and aggrecan. The fluorescent intensity and scope of the nucleus pulposus cells-scaffold composite in vivo for 6 weeks after implanting into 5 6-week-old male nude mice were measured by in vivo imaging technology. Results Primary nucleus pulposus cells were ovoid in cell shape, showing cluster growth, and the cells at passage 1 showed chondrocyte-like morphology under the inverted phase contrast microscope. The results of toluidine blue and collagen type II immunocytochemistry staining for nucleus pulposus cells at passage 1 were positive. The fluorescent intensity was even after labeling, and the cell viability was more than 95% before and after PKH26 labeling. There was no significant difference in cell growth curve between before and after labeling (P gt; 0.05). The real-time fluorescent quantitative PCR showed that there was no significant difference in gene expressions of collagen types I and II, and aggrecan between before and after labeling (P gt; 0.05). Strong fluorescence in nucleus pulposus cells-scaffold composite was detected and by in vivo imaging technology. Conclusion The PKH26 labeling has no effect on the activity, proliferation, and cell phenotype gene expression of the nucleus pulposus cells. A combination of PKH26 labeling and in vivo imaging technology can track the biological behavior of the cells in vivo.
Objective To observe the chondrogenic differentiation of adipose-derived stem cells (ADSCs) by co-culturing chondrocytes and ADSCs. Methods ADSCs and chondrocytes were isolated and cultured from 8 healthy 4-month-old New Zealand rabbits (male or female, weighing 2.2-2.7 kg). ADSCs and chondrocytes at passage 2 were used. The 1 mL chondrocytes at concentration 2 × 104/mL and 1 mL ADSCs at concentration 2 × 104/mL were seeded on the upper layer and lower layer of Transwell 6-well plates separately in the experimental group, while ADSCs were cultured alone in the control group. The morphology changes of the induced ADSCs were observed by inverted phase contrast microscope. The glycosaminoglycan and collagen type II synthesized by the induced ADSCs were detected with toluidine blue staining and immunohistochemistry staining. The mRNA expressions of collagen type II, aggrecan, and SOX9 were detected with real-time fluorescent quantitative PCR. Results ADSCs in the experimental group gradually became chondrocytes-like in morphology and manifested as round; while ADSCs in the control group manifested as long spindle in morphology with whirlool growth pattern. At 14 days after co-culturing, the results of toluidine blue staining and immunohistochemistry staining were positive in the experimental group, while the results were negative in the control group. The results of real-time fluorescent quantitative PCR indicated that the expression levels of collagen type II, aggrecan, and SOX9 mRNA in the experimental group (1.43 ± 0.07, 2.13 ± 0.08, and 1.08 ± 0.08) were significantly higher than those in the control group (0.04 ± 0.03, 0.13 ± 0.04, and 0.10 ± 0.02) (P lt; 0.05). Conclusion ADSCs can differentiate into chondrocytes-like after co-culturing with chondrocytes.
Objective To observe the histological structure and cytocompatibility of novel acellular bone matrix (ACBM) and to investigate the feasibility as a scaffold for bone tissue engineering. Methods Cancellous bone columns were harvested from the density region of 18-24 months old male canine femoral head, then were dealt with high-pressure water washing, degreasing, and decellularization with Trixon X-100 and sodium deoxycholate to prepare the ACBM scaffold. The scaffolds were observed by scanning electron microscope (SEM); HE staining, Hoechst 33258 staining, and sirius red staining were used for histological analysis. Bone marrow mesenchymal stem cells (BMSCs) from canine were isolated and cultured with density gradient centrifugation; the 3rd passage BMSCs were seeded onto the scaffold. MTT test was done to assess the cytotoxicity of the scaffolds. The proliferation and differentiation of the cells on the scaffold were observed by inverted microscope, SEM, and live/dead cell staining method. Results HE staining and Hoechst 33258 staining showed that there was no cell fragments in the scaffolds; sirius red staining showed that the ACBM scaffold was stained crimson or red and yellow alternating. SEM observation revealed a three dimensional interconnected porous structure, which was the microstructure of normal cancellous bone. Cytotoxicity testing with MTT revealed no significant difference in absorbance (A) values between different extracts (25%, 50%, and 100%) and H-DMEM culture media (P gt; 0.05), indicating no cytotoxic effect of the scaffold on BMSCs. Inverted microscope, SEM, and histological analysis showed that three dimensional interconnected porous structure of the scaffold supported the proliferation and attachment of BMSCs, which secreted abundant extracellular matrices. Live/dead cell staining results of cell-scaffold composites revealed that the cells displaying green fluorescence were observed. Conclusion Novel ACBM scaffold can be used as an alternative cell-carrier for bone tissue engineering because of thoroughly decellularization, good mircostructure, non-toxicity, and good cytocompatibility.
【Abstract】 Objective To develop a novel cartilage acellular matrix (CACM) scaffold and to investigate its performance for cartilage tissue engineering. Methods Human cartilage microfilaments about 100 nm-5 μm were prepared after pulverization and gradient centrifugation and made into 3% suspension after acellularization treatment. After placing the suspension into moulds, 3-D porous CACM scaffolds were fabricated using a simple freeze-drying method. The scaffolds were cross-l inked by exposure to ultraviolet radiation and immersion in a carbodiimide solution 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysucinimide. The scaffolds were investigated by histological staining, SEM observation and porosity measurement, water absorption rate analysis. MTT test was also done to assess cytotoxicity of the scaffolds. After induced by conditioned medium including TGF-β1, canine BMSCs were seeded into the scaffold. Cell prol iferation and differentiation were analyzed using inverted microscope and SEM. Results The histological staining showed that there are no chondrocytefragments in the scaffolds and that toluidine blue, safranin O and anti-collagen II immunohistochemistry staining werepositive. The novel 3-D porous CACM scaffold had good pore interconnectivity with pore diameter (155 ± 34) μm, 91.3% ± 2.0% porosity and 2 451% ± 155% water absorption rate. The intrinsic cytotoxicity assessment of novel scaffolds using MTT test showed that the scaffolds had no cytotoxic effect on BMSCs. Inverted microscope showed that most of the cells attached to the scaffold. SEM micrographs indicated that cells covered the scaffolds uniformly and majority of the cells showed the round or ell iptic morphology with much matrix secretion. Conclusion The 3-D porous CACM scaffold reserved most of extracellular matrix after thoroughly decellularization, has good pore diameter and porosity, non-toxicity and good biocompatibil ity, which make it a suitable candidate as an alternative cell-carrier for cartilage tissue engineering.