west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "YE Xiangming" 2 results
  • Application of digital intellectualization technique in rehabilitation of spinal cord injury

    With the breakthroughs of digitization, artificial intelligence and other technologies and the gradual expansion of application fields, more and more studies have been conducted on the application of digital intelligence technologies such as exoskeleton robots, brain-computer interface, and spinal cord neuromodulation to improve or compensate physical function after spinal cord injury (SCI) and improve self-care ability and quality of life of patients with SCI. The development of digital intelligent rehabilitation technology provides a new application platform for the functional reconstruction after SCI, and the digital and intelligentized rehabilitation technology has broad application prospects in the clinical rehabilitation treatment after SCI. This article elaborates on the current status of exoskeleton robots, brain-computer interface technology, and spinal cord neuromodulation technology for functional recovery after SCI.

    Release date: Export PDF Favorites Scan
  • The measurements of the similarity of dynamic brain functional network

    Brain functional network changes over time along with the process of brain development, disease, and aging. However, most of the available measurements for evaluation of the difference (or similarity) between the individual brain functional networks are for charactering static networks, which do not work with the dynamic characteristics of the brain networks that typically involve a long-span and large-scale evolution over the time. The current study proposes an index for measuring the similarity of dynamic brain networks, named as dynamic network similarity (DNS). It measures the similarity by combining the “evolutional” and “structural” properties of the dynamic network. Four sets of simulated dynamic networks with different evolutional and structural properties (varying amplitude of changes, trend of changes, distribution of connectivity strength, range of connectivity strength) were generated to validate the performance of DNS. In addition, real world imaging datasets, acquired from 13 stroke patients who were treated by transcranial direct current stimulation (tDCS), were used to further validate the proposed method and compared with the traditional similarity measurements that were developed for static network similarity. The results showed that DNS was significantly correlated with the varying amplitude of changes, trend of changes, distribution of connectivity strength and range of connectivity strength of the dynamic networks. DNS was able to appropriately measure the significant similarity of the dynamics of network changes over the time for the patients before and after the tDCS treatments. However, the traditional methods failed, which showed significantly differences between the data before and after the tDCS treatments. The experiment results demonstrate that DNS may robustly measure the similarity of evolutional and structural properties of dynamic networks. The new method appears to be superior to the traditional methods in that the new one is capable of assessing the temporal similarity of dynamic functional imaging data.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content