The monitoring of pregnant women is very important. It plays an important role in reducing fetal mortality, ensuring the safety of perinatal mother and fetus, preventing premature delivery and pregnancy accidents. At present, regular examination is the mainstream method for pregnant women's monitoring, but the means of examination out of hospital is scarce, and the equipment of hospital monitoring is expensive and the operation is complex. Using intelligent information technology (such as machine learning algorithm) can analyze the physiological signals of pregnant women, so as to realize the early detection and accident warning for mother and fetus, and achieve the purpose of high-quality monitoring out of hospital. However, at present, there are not enough public research reports related to the intelligent processing methods of out-of-hospital monitoring for pregnant women, so this paper takes the out-of-hospital monitoring for pregnant women as the research background, summarizes the public research reports of intelligent processing methods, analyzes the advantages and disadvantages of the existing research methods, points out the possible problems, and expounds the future development trend, which could provide reference for future related researches.
Methods for achieving diagnosis of Parkinson’s disease (PD) based on speech data mining have been proven effective in recent years. However, due to factors such as the degree of disease of the data collection subjects and the collection equipment and environment, there are different categories of sample aliasing in the sample space of the acquired data set. Samples in the aliased area are difficult to be identified effectively, which seriously affects the classification accuracy of the algorithm. In order to solve this problem, a partition bagging ensemble learning is proposed in this article, which measures the aliasing degree of the sample by designing the the ratio of sample centroid distance metrics and divides the training set into multiple subsets. And then the method of transfer training of misclassified samples is used to adjust the results of subset partitioning. Finally, the optimized weights of each sub-classifier are used to integrate the test results. The experimental results show that the classification accuracy of the proposed method is significantly improved on two public datasets and the increasement of mean accuracy is up to 25.44%. This method not only effectively improves the classification accuracy of PD speech dataset, but also increases the sample utilization rate, providing a new idea for the diagnosis of PD.