west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "ZHANG Changchun" 6 results
  • RESEARCH PROGRESS OF SECONDARY FRACTURE OF ADJACENT VERTEBRAL BODY AFTER PERCUTANEOUS VERTEBROPLASTY AND PERCUTANEOUS KYPHOPLASTY

    Objective To summarize the research progress of secondary fracture of adjacent vertebral body after percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP). Methods Recent literature concerning PVP and PKP was extensively reviewed and summarized. Results The main reasons of secondary fracture of adjacent vertebral body after PVP and PKP are the natural process of osteoporosis, the initial fracture type, the bone cement, the surgical approach, the bone mineral density, and other factors. Conclusion Secondary fracture of adjacent vertebral body after PVP and PKP is a challenge for the clinician, a variety of factors need to be suficiently considered and be confirmed by a lot of basic and clinical epidemiological studies.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • ADVANCES IN OSTEOGENIC MECHANISM AND OSTEOGENIC EFFECTS OF BONE MORPHOGENETIC PROTEIN 6

    Objective To review the osteogenic mechanism and osteogenic effects of bone morphogenetic protein 6 (BMP-6) so as to provide the basis for further research of BMP-6. Methods The related articles about the osteogenic mechanism and the osteogenic effects of BMP-6 in experimental animals were extensively summarized. Results BMP-6 from bone matrix can transduct the osteogenic signal to bone marrow mesenchymal stem cells (BMSCs) by means of Smad protein signal transduction pathway. And the BMSCs which received the signals will differentiate into osteoblasts and chondroblasts. Therefore, BMP-6 plays an important role in the development and maturation of bone and cartilage. In addition, BMP-6 has a close relation with bone diseases, such as fracture, osteoporosis, and bone tumor. Conclusion The deep research of BMP-6 is expected to provide a new therapeutic approach for treating bone diseases of nonunion, osteoarthritis, and osteoporosis.

    Release date:2016-08-31 04:12 Export PDF Favorites Scan
  • Effects of lentivirus-mediated insulin-like growth factor 1 and platelet derived growth factor genes on nucleus pulposus tissue of human degenerated intervertebral disc

    ObjectiveTo observe and compare the cytological and biological differences between human normal and degenerated nucleus pulposus (NP), and to investigate the repair effect of insulin-like growth factor 1 (IFG-1) and platelet derived growth factor (PDGF) on human degenerated NP.MethodsHuman degenerative and normal NP tissues were obtained from operative patients, a portion of which were processed into tissue sections and HE staining was performed to observe the morphological changes of nucleus pulposus cells (NPCs) before and after degeneration of NP. Immunohistochemistry staining was used to determine the expression levels of collagen type Ⅰ, collagen type Ⅱ, B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X (Bax) proteins. Another portion of tissues were isolated and cultured and NPCs morphology was observed under inverted microscope. Western blot analysis was used to detect collagen type Ⅱ protein expression. Then, the gene transfection experiments were launched, including 4 groups, with group A designed as degenerated NPCs only, and groups B, C, and D of degenerated NPCs transfected with IGF-1 gene lentiviral particles, PDGF gene lentiviral particles, and lentiviral particles carrying IGF-1 and PDGF double genes, respectively. At 21 days after transfection, the cell morphology of each group was observed under inverted microscope, the positive rates of IGF-1 and PDGF of each group were measured by flow cytometry, and the expression of collagen type Ⅱ protein was detected by using immunohistochemistry staining and Western blot.ResultsHE staining showed that there were a large number of notochordal cells and a small number of chondrocytes in the central NP tissue of normal group, while the NPCs in degeneration group were significantly reduced, and a large proportion of fibrocartilage tissues were found in NP tissue. Immunohistochemistry staining showed that the percentages of collagen type Ⅰ and Bax protein-positive cells in degeneration group were significantly higher than those of normal group, while the percentages of collagen type Ⅱ and Bcl-2 protein-positive cells were significantly lower than those of normal group (P<0.05). Western blot showed that the relative expression level of collagen type Ⅱ protein in degeneration group was significantly lower than that in normal group (t=65.493, P=0.000). At 21 days after gene transfection, compared with group A, the cell viability of groups B, C, and D increased and the morphology became more regular. Flow cytometry showed that the percentages of IGF-1-positive cells in groups B and D were significantly higher than that in group A, and the percentages of PDGF-positive cells in groups C and D were significantly higher than that in group A (P<0.05). Immunohistochemistry staining showed that the positive stainings of collagen type Ⅱ in groups A, B, C, and D was (±), (+), (+), and (++), respectively. Western blot showed that the relative expression of collagen type Ⅱ protein in groups A, B, C, and D increased by degrees, and the differences between groups were significant (P<0.05).ConclusionBoth IGF-1 and PDGF can reverse the degeneration of intervertebral discs NPCs and they have synergistic effects, providing experimental basis for its application in clinical treatment approaches for degenerative disc disease.

    Release date:2020-07-27 07:36 Export PDF Favorites Scan
  • EFFECTS OF RECOMBINANT ADENOVIRUS VECTOR CARRYING HUMAN INSULIN-LIKE GROWTH FACTOR 1 GENE ON THE APOPTOSIS OF NUCLEUS PULPOSUS CELLS IN VITRO

    Objective To investigate the effects of human insulin-like growth factor 1 (hIGF-1) gene transfected by recombinant adenovirus vector (Ad-hIGF-1) on the apoptosis of rabbit nucleus pulposus cells induced by tumor necrosis factor α (TNF-α). Methods The intervertebral disc nucleus pulposus were harvested from 8 healthy adult domestic rabbits (male or female, weighing 2.0-2.5 kg). The nucleus pulposus cells were isolated with collagenase II digestion and the passage 2 cells were cultured to logarithm growing period, and then they were divided into 3 groups according to culture condition: DMEM/F12 medium containing 10% PBS, DMEM/F12 medium containing 10% PBS and 100 ng/mL TNF-α, and DMEM/ F12 medium containing 10% PBS, 100 ng/ mL TNF-α, and Ad-hIGF-1 (multiplicity of infection of 50) were used in control group, TNF-α group, and Ad-hIGF-1 group, respectively. The results of transfection by adenovirus vector carrying hIGF-1 gene were observed by fluorescent microscopy; the expression of hIGF-1 protein was detected by Western blot, hIGF-1 mRNA expression by RT-PCR, and the cell apoptosis rate by TUNEL and flow cytometry. Results Green fluorescence was observed by fluorescent microscopy in Ad-hIGF-1 group, indicating that successful cell transfection. The expressions of hIGF-1 protein and mRNA were detected in Ad-hIGF-1 group by Western blot and RT-PCR, while the control group and TNF-α group had no expression. The cell apoptosis rates of TNF-α group, Ad-hIGF-1 group, and control group were 34.24% ± 4.60%, 6.59% ± 1.03%, and 0.40% ± 0.15%, respectively. The early apoptosis rates of TNF-α group, Ad-hIGF-1 group, and control group were 22.16% ± 2.69%, 5.03% ± 0.96%, and 0.49% ± 0.05%, respectively; the late cell apoptosis rates were 13.96% ± 4.86%, 10.68% ± 3.42%, and 0.29% ± 0.06%, respectively. Compared with TNF-α group, the cell apoptosis rates of Ad-hIGF-1 group and control group were significantly reduced (P lt; 0.05); the cell apoptosis rate of Ad-hIGF-1 group was significantly higher than that of control group (P lt; 0.05). Conclusion Ad-hIGF-1 could inhibit the apoptosis of nucleus pulposus cells induced by TNF-α.

    Release date:2016-08-31 04:05 Export PDF Favorites Scan
  • INFLUENCE ON ADJACENT LUMBAR BONE DENSITY AFTER STRENGTHENING OF T12, L1 SEGMENT VERTEBRAL OSTEOPOROTIC COMPRESSION FRACTURE BY PERCUTANEOUS VERTEBROPLASTY AND PERCUTANEOUS KYPHOPLASTY

    Objective To observe the influence on adjacent lumbar bone density after strengthening of T12, L1 segment vertebral osteoporotic compression fracture by percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP) in postmenopausal female. Methods Between January 2008 and June 2011, 59 patients with T12, L1 segment thoracolumbar osteoporotic compression fracture were treated with PVP in 29 cases (PVP group) and PKP in 30 cases (PKP group), who were in accordance with the inclusion and exclusion criteria. No significant difference was found in gender, duration of menopause, disease druation, causes of injury, fractured vertebral body, and vertebral fracture classification between 2 groups (P gt; 0.05). The kyphosis Cobb angle of surgical area was measured at preoperation, 1 week after operation, and last follow-up; the lower three lumbar spine bone mineral density (BMD) of the surgical area, the femoral neck BMD, and body mass index (BMI) of patients were measured at perioperative period and last follow-up to find out the statement of anti-osteoporosis; FRAX online tools were used to evaluate the probability of major osteoporotic fracture and hip fracture of the next 10 years. Results The average follow-up was 25.5 months (range, 12-48 months) in 2 groups. There was significant difference in kyphosis Cobb angle of T12, L1 between preoperation and last follow-up in 2 groups (P lt; 0.05); the Cobb angle of PKP group was significantly less than that of PVP group at 1 week after operation and last follow-up (P lt; 0.05). No significant difference was found in BMI between 2 groups, and between perioperative period and last follow-up in the same group (P gt; 0.05). The lower three lumbar spine BMD of the surgical area and its T value at last follow-up was improved significantly when compared with BMD at perioperative period (P lt; 0.05); there was no significant difference in the lower three lumbar spine BMD and its T value between 2 groups at perioperative period (P gt; 0.05), but significant difference was found between two groups at last follow-up (P lt; 0.05). Difference was not significant in the femoral neck BMD and its T value between 2 groups, and between perioperative period and last follow-up in the same group (P gt; 0.05). The probability of major osteoporotic fracture and hip fracture of the next 10 years was not significantly different between 2 groups and between perioperative period and last follow-up in the same group (P gt; 0.05). Conclusion The increased BMD of adjacent lumbar spine can improve the strength of the vertebral body and reduce the incidence of adjacent vertebral fracture in patients with T12, L1 segment vertebral osteoporotic compression fracture after PVP/PKP, and PKP is superior to PVP increasing BMD of adjacent lumbar spine.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • Effect of Melittin on collagen type II expression of rat endplate chondrocytes induced by interleukin 1β

    Objective To observe the effect of Melittin on collagen type II (Col-II) expression of rat endplate chondrocytes (EPCs) induced by interleukin 1β (IL-1β). Methods Primary EPCs from the lumbar vertebra of 4-week-old Sprague Dawley rats were culturedin vitro and identified by morphological observation, toluidine blue staining and Col-II immunofluorescence staining. Then, MTT assay was used to determine the optimal concentration of IL-1 and Melittin. Next, EPCs at passage 3 were randomly divided into 4 groups: no treatment was done in group A as control group; the optimal concentration of IL-1β, Melittin, and both IL-1β and Melittin were used in groups B, C, and D respectively. The expression of Col-II was detected by Western blot after 48 hours intervention. Results Under inverted microscope, the first generation EPCs were polygonal; cell proliferation decreased after fifth generation, and cell morphology changed into fusiform. The acidic mucosubstance in the cytoplasm (such as Aggrecan) was stained dark blue by toluidine blue. After marking Col-II by immunofluorescence, the positive expression of cytoskeleton (green fluorescence) could be observed. MTT assay showed that IL-1β and Melittin could inhibit the EPCs in a dose-dependent manner after intervention of 24 and 48 hours, and the optimal concentrations of IL-1β and Melittin intervention were 10 ng/mL and 1.0 μg/mL respectively. Compared with group A, the expression of Col-II was significantly reduced in group B, and was significantly increased in group C by Western blot assay, but there was no significant difference between group D and group A. The Col-II expression levels of groups A, B, C, and D were 0.991±0.024, 0.474±0.127, 1.913±0.350, and 1.159±0.297 respectively, showing significant difference between the other groups (P<0.05) except between group A and group D (P>0.05). Conclusion Melittin has a protective effect on endplate cartilage, and the research results provide experimental basis for the prevention and treatment of spinal degenerative disease.

    Release date:2017-04-01 08:56 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content