Objective To explore the effectiveness and predictive value of computer simulated thoracic endovascular aortic repair (TEVAR). Methods The clinical data of the patients with Stanford type B aortic dissection who underwent TEVAR from February 2019 to February 2022 in our hospital was collected. According to whether there was residual false cavity around the stent about 1 week after TEVAR, the patients were divided into a false cavity closure group and a false cavity residual group. Based on computer simulation, personalized design and three-dimensional construction of the stent framework and covering were carried out. After the stent framework and membrane were assembled, they were pressed and placed into the reconstructed aortic dissection model. TEVAR computer simulation was performed, and the simulation results were analyzed for hemodynamics to obtain the maximum blood flow velocity and maximum wall shear stress at the false lumen outlet level at the peak systolic velocity of the ventricle, which were compared with the real hemodynamic data of the patient after TEVAR surgery. The impact of hemodynamics on the residual false lumen around the stent in the near future based on computer simulation of hemodynamic data after TEVAR surgery was further explored. Results Finally a total of 28 patients were collected, including 24 males and 4 females aged 53.390±11.020 years. There were 18 patients in the false cavity closure group, and 10 patients in the false cavity residual group. The error rate of shear stress of the distal decompression port of the false cavity after computer simulation TEVAR was 6%-25%, and the error rate of blood flow velocity was 3%-31%. There was no statistical difference in age, proportion of male, history of hypertension, history of diabetes, smoking history, prothrombin time or activated partial thromboplatin time at admission between the two groups (all P>0.05). The blood flow velocity and shear stress after TEVAR were statistically significant (all P<0.05). The maximum shear stress (OR=1.823, P=0.010) of the false cavity at the level of the distal decompression port after simulated TEVAR was an independent risk factor for the residual false cavity around the stent. Receiver operating characteristic curve analysis showed that the area under the curve corresponding to the maximum shear stress of false cavity at the level of distal decompression port after simulated TEVAR was 0.872, the best cross-sectional value was 8.469 Pa, and the sensitivity and specificity were 90.0% and 83.3%, respectively. Conclusion Computers can effectively simulate TEVAR and perform hemodynamic analysis before and after TEVAR surgery through simulation. Maximum shear stress at the decompression port of the distal end of the false cavity is an independent risk factor for the residual false cavity around the stent. When it is greater than 8.469 Pa, the probability of residual false cavity around the stent increases greatly.
Macrophages are important immune effector cells with significant plasticity and heterogeneity in the body immune system, and play an important role in normal physiological conditions and in the process of inflammation. It has been found that macrophage polarization involves a variety of cytokines and is a key link in immune regulation. Targeting macrophages by nanoparticles has a certain impact on the occurrence and development of a variety of diseases. Due to its characteristics, iron oxide nanoparticles have been used as the medium and carrier for cancer diagnosis and treatment, making full use of the special microenvironment of tumors to actively or passively aggregate drugs in tumor tissues, which has a good application prospect. However, the specific regulatory mechanism of reprogramming macrophages using iron oxide nanoparticles remains to be further explored. In this paper, the classification, polarization effect and metabolic mechanism of macrophages were firstly described. Secondly, the application of iron oxide nanoparticles and the induction of macrophage reprogramming were reviewed. Finally, the research prospect and difficulties and challenges of iron oxide nanoparticles were discussed to provide basic data and theoretical support for further research on the mechanism of the polarization effect of nanoparticles on macrophages.
Randomized controlled trial (RCT) are considered the "gold standard" for evaluating the causal effects of interventions on outcome measures. However, due to high research costs and ethical constraints, conducting RCT in clinical practice, especially in the surgical field, faces numerous challenges such as difficulties in subject recruitment, implementation of blinding, and standardization of interventions. In such cases, using real-world data to perform causal inference under the framework of target trial emulation (TTE), based on the principles of RCT design, helps to identify and reduce biases arising from design flaws in traditional observational studies, such as immortal time bias, confounding, selection bias, or collider bias. This approach can produce high-quality evidence comparable to that of RCT, thereby enhancing the clinical guidance value of real-world data studies. However, TTE has limitations, such as the inability to completely eliminate confounding, high quality requirements for source data, and the current lack of reporting standards. Therefore, researchers should be fully aware of these limitations to avoid making incorrect causal inferences. This article intends to provide an overview of the TTE framework, implementation points, application scope, application cases, and advantages and disadvantages of the framework.