Objective To explore the role of estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) in estrogen-induced proliferation of endometrial cancer, and explore whether metformin inhibits the proliferation of endometrial cancer cells through ERα and ERβ. Methods Stable transfected Ishikawa cells were constructed by lentivirus. The effects of down-regulated ERα and ERβ on estrogen-induced Ishikawa cell proliferation were detected by methyl thiazolyl tetrazolium assay. The effects of down-regulated ERα and ERβ on estrogen-induced Ishikawa cell cycle were detected by flow cytometry. In addition, quantitative real-time polymerase chain reaction and Western blotting assays were used to detect changes in the expression of cyclinD1 and P21 involved in cell cycle regulation. The effects of down-regulated ERα and ERβ on estrogen-induced Ishikawa cell proliferation were observed by adding metformin to estrogen treatment. Results Down-regulation of ERα inhibited the proliferation and cell cycle of Ishikawa cells (P<0.05). Down-regulation of ERα also inhibited the expression of cyclinD1 and promoted the expression of P21 (P<0.05). Down-regulation of ERα counteracted the effect of estrogen-induced cell proliferation, cell cycle, and the expression changes of cyclinD1 and P21 (P<0.05). Down-regulation of ERβ promoted the proliferation and cell cycle of Ishikawa cells (P<0.05). Down-regulation of ERβ also promoted the expression of cyclinD1 and inhibited the expression of P21 (P<0.05). Down-regulation of ERβ enhanced the effect of estrogen-induced cell proliferation, cell cycle, and the expression changes of cyclinD1 and P21 (P<0.05). Metformin inhibited the proliferation of estrogen-induced Ishikawa cells (P<0.05), while in the down-regulated ERα Ishikawa cells or down-regulated ERβ Ishikawa cells, the inhibition of metformin on Ishikawa cells disappeared (P<0.05). Conclusions ERα may promote estrogen-induced proliferation of endometrial cancer cells, while ERβ may inhibit estrogen-induced proliferation of endometrial cancer cells. In addition, ERα and ERβ may also mediate the inhibitory effect of metformin on endometrial cancer cells.
Objective To investigate the clinical value of computed tomographic angiography (CTA) and three-dimensional reconstruction technique in repairing scalp avulsion wound with large skull exposure by the free latissimus dorsi flap transplantation. Methods Between October 2007 and June 2012, 9 female patients with serious scalp avulsion and large skull exposure were treated, aged 23-54 years (mean, 38 years). The injury causes included machine twist injury in 6 cases, traffic accident injury in 2 cases, and falling from height injury in 1 case. Before admission, 3 patients had scalp necrosis after scalp in situ replantation, and 6 patients underwent debridement and dressing. The time from injury to admission was 8 hours to 7 days (mean, 1 day). The avulsed scalp area ranged from 75% to 90% of the scalp area (mean, 81%); the exposed skull area ranged from 55% to 70% of the scalp area (mean, 63%). Two patients had unilateral auricle avulse. CTA was used to observe the superficial temporal artery and vein, facial artery, external jugular vein, dorsal thoracic artery and vein, and measure the blood vessel diameter before operation. According to the CTA results, the latissimus dorsal skin flaps were desinged to repair wounds in 7 cases, the latissimus dorsal muscle flaps combined with skin graft were used to repair wounds in 2 cases. According to preoperative design, operation was successfully completed in 7 cases; great saphenous vein was used as vascular graft in 2 cases having poor images of superficial temporal vessels. The size of latissimus dorsal skin flaps ranged from 20 cm × 14 cm to 25 cm × 20 cm; the donor site was repaired with skin graft. The size of latissimus dorsal muscle flaps were 23 cm × 16 cm and 16 cm × 10 cm; the donor site was directly sutured. Results The blood vessel diameter measured during operation was close to the value measured before operation. The operation time was 6-8 hours (mean, 6.5 hours). The latissimus dorsal muscle (skin) flap and skin graft survived, with primary healing of wound or incision at donor site. The patients were followed up 3 months-2 years (mean, 6 months). The flap had soft texture and skin had no ulceration. Conclusion The free latissimus dorsi flaps can repair scalp avulsion with large skull exposure. Preoperative CTA can get the vessel anatomical structure and diameter at donor and recipient sites, which will guide the operation program design and implementation so as to shorten the operation time and improve the accuracy rate of vascular anastomosis.