west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "ZHANG Junxia" 2 results
  • Research on ground reaction forces and utilized coefficient of friction of turning gait

    Utilized coefficient of friction (UCOF), which is calculated with ground reaction forces (GRF), is an effective factor to predict the possibility of slip. For researching the UCOF values of different turning strategies and then predicting the possibility of slip, this study selected 10 healthy young men to perform straight walking and 60° and 90° turning using two turning strategies (step turning and spin turning). ATMI force plate was used to collect the data of GRF, and then the UCOF values of different walking conditions were calculated. The study showed that difference of the medial-lateral force in different walking conditions was great; the slip possibility of turning was significantly greater than that of straight walking. For spin turn, turning angle had no significant effect on peak UCOF values. For step turn, the propulsive force decreased with the increase of turning angle, which caused a result that the peak UCOF values of 60° turn were significantly greater than that for 90° turn. This suggests that turning angle had little effect on possibility of slip of spin turning but great effect on that of step turning, and the greater angle led smaller possibility of slip.

    Release date:2017-04-01 08:56 Export PDF Favorites Scan
  • Study on the influence of wearable lower limb exoskeleton on gait characteristics

    The purpose of this paper was to investigate the effects of wearable lower limb exoskeletons on the kinematics and kinetic parameters of the lower extremity joints and muscles during normal walking, aiming to provide scientific basis for optimizing its structural design and improving its system performance. We collected the walking data of subjects without lower limb exoskeleton and selected the joint angles in sagittal plane of human lower limbs as driving data for lower limb exoskeleton simulation analysis. Anybody (the human biomechanical analysis software) was used to establish the human body model (the human body model without lower limb exoskeleton) and the man-machine system model (the lower limb exoskeleton model). The kinematics parameters (joint force and joint moment) and muscle parameters (muscle strength, muscle activation, muscle contraction velocity and muscle length) under two situations were compared. The experimental result shows that walking gait after wearing the lower limb exoskeleton meets the normal gait, but there would be an occasional and sudden increase in muscle strength. The max activation level of main lower limb muscles were all not exceeding 1, in another word the muscles did not appear fatigue and injury. The highest increase activation level occurred in rectus femoris (0.456), and the lowest increase activation level occurred in semitendinosus (0.013), which means the lower limb exoskeletons could lead to the fatigue and injury of semitendinosus. The results of this study illustrate that to avoid the phenomenon of sudden increase of individual muscle force, the consistency between the length of body segment and the length of exoskeleton rod should be considered in the design of lower limb exoskeleton extremity.

    Release date:2019-12-17 10:44 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content