ObjectiveTo summarize the mid-term effectiveness of arthroscopic anterior cruciate ligament (ACL) reconstruction combined with meniscus allograft transplantation.MethodsA clinical data of 21 patients treated with arthroscopic ACL reconstruction and meniscus allograft transplantation and followed up more than 5 years between February 2007 and December 2014 was retrospectively analyzed. There were 12 males and 9 females, aged from 18 to 45 years, with an average age of 23.5 years. The cause of injury was sport sprain in 15 cases, falling in 4 cases, and traffic accident in 2 cases. The time from injury to operation ranged from 2 to 36 months, with an average of 12 months. Among them, 15 patients underwent previous meniscectomy, with an average interval of 1.6 years (range, 3 months to 6.5 years). All patients were primary ACL reconstruction. Preoperative anterior drawer test, Lachman test, and pivot shift test were positive. Lysholm score was 43.6±10.2. International Knee Documentation Committee (IKDC) score was 60.50±14.06. Of the 21 patients, 10 were gradeⅠ-Ⅱcartilage injuries and 11 were grade Ⅲ cartilage injuries according to MRI. ResultsAll patients were followed up 5.1-7.8 years, with an average of 5.5 years. There were 2 cases of numbness of lower extremity, 3 cases of slight exudation of incision, 2 cases of articular movement bounce, 5 cases of mild joint swelling and pain after exercise. At last follow-up, Lachman tests were negative in 18 cases and positive in 3 cases; anterior drawer tests were negative in 19 cases and positive in 2 cases; pivot shift tests were negative in all cases. Lysholm score was 84.5±16.5 and IKDC score was 85.25±4.60, which were significantly higher than those before operation (P<0.01). The flexion and extension of the affected knee joint were (128±13) and (3±7)°, respectively, which were smaller than those of the healthy knee joint [(133±15), (0±5)°] (P<0.01). The results of KT-1000 test showed that when knee flexion was 30 and 90°, tibial anterior displacement of affected side [(2.35±1.20), (1.60±1.15) mm] were not significantly different from those of healthy side [(1.20±1.10), (1.10±1.03) mm] (P>0.01). MRI showed that the ACL graft was in normal position and meniscus survived well. Cartilage injuries were gradeⅠ-Ⅱ in 18 cases and grade Ⅲ in 3 cases. ConclusionFor patients with severe meniscus injury and ACL rupture, ACL reconstruction combined with meniscus allograft transplantation can restore the stability of the joint, recover the meniscus function which is conducive to the protection of articular cartilage and obtain satisfactory mid-term effectiveness.
Objective To observe the changes of force bearing area and pressures of the rabbit tibiofemoral contact area and the biomechanical reconstruction level of joint after meniscal allograft. Methods A total of 28 Japanese rabbits were involved, weighing 3.0-3.5 kg, male or female. Of 28 rabbits, 7 were selected as meniscus donors, the remaining 21 rabbits were randomized into group A (n=7), group B (n=7), and group C (n=7). Group A underwent single knee opening and suturing, group B underwent medial meniscus excision and suturing, and group C underwent medial meniscus allograft after medial meniscus excision and suturing. The rabbits were sacrified at 12 weeks after operation for biomechanical observation through biomechanical machine and color imaging system. The meniscus tissue specimens were harvested from groups A and C to perform histological and immunohistochemical staining. Results After operation, all rabbits in 3 groups survived to the end of experiment. There were significant differences in the force bearing area and pressures at 0-90° flexion between group B and groups A, C (P lt; 0.05) at 12 weeks, showing no significant difference between group A and group C (P gt; 0.05); and there were significant differences in the force bearing area and pressures at 120° flexion among 3 groups (P lt; 0.05). The histological observation showed that the number of cartilage cells and collagen fibers returned to normal in group C, and the immunohistochemical staining showed that transplanted meniscus of group C contained large amounts of collagen fibers consisting of collagen type I and collagen type II. After 12 weeks of operation, the collagen type I contents were 0.612 5 ± 0.059 8 in group A and 0.587 2 ± 0.063 9 in group C, showing no significant difference (t=0.765, P=0.465); the collagen type II contents were 0.772 4 ± 0.081 5 and 0.814 3 ± 0.051 7, respectively, showing no significant difference (t= —0.136, P=0.894). Conclusion The allograft of rabbit meniscus can significantly increase the force bearing area of the tibiofemoral contact area and reduce the average pressure. Therefore, biomechanically speaking, the meniscus allograft can protect the articular cartilage and reconstruct the biomechanical balance.
Objective To explore the safety and effectiveness of one-stage posterior eggshell osteotomy and long-segment pedicle screw fixation in the treatment of ankylosing spondylitis kyphosis combined with acute thoracolumbar vertebral fracture. Methods A clinical data of 20 patients with ankylosing spondylitis kyphosis combined with acute thoracolumbar spine fracture, who were treated with one-stage posterior eggshell osteotomy and long-segment pedicle screw fixation between April 2016 and January 2022, was retrospectively analyzed. Among them, 16 cases were male and 4 cases were female; their ages ranged from 32 to 68 years, with an average of 45.9 years. The causes of injury included 10 cases of sprain, 8 cases of fall, and 2 cases of falling from height. The time from injury to operation ranged from 1 to 12 days, with an average of 7.1 days. The injured segment was T11 in 2 cases, T12 in 2 cases, L1 in 6 cases, and L2 in 10 cases. X-ray film and CT showed that the patients had characteristic imaging manifestations of ankylosing spondylitis, and the fracture lines were involved in the anterior, middle, and posterior columns and accompanied by different degrees of kyphosis and vertebral compression; and MRI showed that 12 patients had different degrees of nerve injuries. The operation time, intraoperative bleeding, intra- and post-operative complications were recorded. The visual analogue scale (VAS) score and Oswestry disability index (ODI) were used to evaluate the low back pain and quality of life, and the American spinal cord injury association (ASIA) classification was used to evaluate the neurological function. X-ray films were taken, and local Cobb angle (LCA) and sagittal vertical axis (SVA) were measured to evaluate the correction of the kyphosis. Results All operations were successfully completed and the operation time ranged from 127 to 254 minutes (mean, 176.3 minutes). The amount of intraoperative bleeding ranged from 400 to 950 mL (mean, 722.5 mL). One case of dural sac tear occurred during operation, and no cerebrospinal fluid leakage occurred after repair, and the rest of the patients did not suffer from neurological and vascular injuries, cerebrospinal fluid leakage, and other related complications during operation. All incisions healed by first intention without infection or fat liquefaction. All patients were followed up 8-16 months (mean, 12.5 months). The VAS score, ODI, LCA, and SVA at 3 days after operation and last follow-up significantly improved when compared with those before operation (P<0.05), and the difference between 3 days after operation and last follow-up was not significant (P>0.05). The ASIA grading of neurological function at last follow-up also significantly improved when compared with that before operation (P<0.05), including 17 cases of grade E and 3 cases of grade D. At last follow-up, all bone grafts achieved bone fusion, and no complications such as loosening, breaking of internal fixation, and pseudoarthrosis occurred. Conclusion One-stage posterior eggshell osteotomy and long-segment pedicle screw fixation is an effective surgical procedure for ankylosing spondylitis kyphosis combined with acute thoracolumbar vertebral fracture. It can significantly relieve patients’ clinical symptoms and to some extent, alleviate the local kyphotic deformity.