ObjectiveTo investigate the risk factors of cement leakage in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fracture (OVCF). MethodsBetween March 2011 and March 2012, 98 patients with single level OVCF were treated by PVP, and the cl inical data were analyzed retrospectively. There were 13 males and 85 females, with a mean age of 77.2 years (range, 54-95 years). The mean disease duration was 43 days (range, 15-120 days), and the mean T score of bone mineral density (BMD) was-3.8 (range, -6.7--2.5). Bilateral transpedicular approach was used in all the patients. The patients were divided into cement leakage group and no cement leakage group by occurrence of cement leakage based on postoperative CT. Single factor analysis was used to analyze the difference between 2 groups in T score of BMD, operative level, preoperative anterior compression degree of operative vertebrae, preoperative middle compression degree of operative vertebrae, preoperative sagittal Cobb angle of operative vertebrae, preoperative vertebral body wall incompetence, cement volume, and volume ratio of intravertebral bone cement to vertebral body. All relevant factors were introduced to logistic regression analysis to analyze the risk factors of cement leakage. ResultsAll procedures were performed successfully. The mean operation time was 40 minutes (range, 30-50 minutes), and the mean volume ratio of intravertebral bone cement to vertebral body was 24.88% (range, 7.84%-38.99%). Back pain was alleviated significantly in all the patients postoperatively. All patients were followed up with a mean time of 8 months (range, 6-12 months). Cement leakage occurred in 49 patients. Single factor analysis showed that there were significant differences in the volume ratio of intravertebral bone cement to vertebral body and preoperative vertebral body wall incompetence between 2 groups (P < 0.05), while no significant difference in T score of BMD, operative level, preoperative anterior compression degree of operative vertebrae, preoperative middle compression degree of operative vertebrae, preoperative sagittal Cobb angle of operative vertebrae, and cement volume (P > 0.05). The logistic regression analysis showed that the volume ratio of intravertebral bone cement to vertebral body (P < 0.05) and vertebral body wall incompetence (P < 0.05) were the risk factors for occurrence of cement leakage. ConclusionThe volume ratio of intravertebral bone cement to vertebral body and vertebral body wall incompetence are risk factors of cement leakage in PVP for OVCF. Cement leakage is easy to occur in operative level with vertebral body wall incompetence and high volume ratio of intravertebral bone cement to vertebral body.
ObjectiveTo compare the effectiveness and imaging features between implanting single and double Cage into intervertebral body through unilateral transforaminal lumbar interbody fusion (TLIF). MethodsThe clinical data were collected and analyzed from 104 patients who underwent unilateral TLIF between January 2013 and October 2014, who were divided into 2 groups:single Cage was implanted into intervertebral body in 64 cases (76 segments) in traditional group, and double Cage was implanted into intervertebral body in 56 cases (70 segments) in reformative group. There was no significant difference in age, gender, bone mineral density, operation segments between 2 groups (P>0.05). The visual analogue scale (VAS), Oswestry disability index (ODI), and Japanese Orthopedic Association (JOA) scores were used to evaluate the effectiveness; the area of intervertebral bone-graft, fusion rate, height of intervertebral space, and the number of Cage subsidence were measured by CT scan. ResultsAll the patients were followed up 12.85 months on average (range, 9-15 months). The VAS, ODI, and JOA scores were significantly improved at each time point after operation when compared with preoperative values (P<0.05), and no significant difference was found between 2 groups (P>0.05) except VAS and ODI at 12 months after operation (P<0.05). However, the area of intervertebral bone-graft in reformative group[(5.94±1.17) cm2] was significantly larger than that in traditional group[(4.81±0.97) cm2] at 7 days after operation (t=-6.365, P=0.000). At 3 and 12 months after operation, the fusion rate was respectively 84.2% and 92.1% in traditional group and was respectively 88.6% and 94.3% in reformative group. Although the height of intervertebral space were increased when compared with preoperative height, the incidence rates of Cages subsidence in traditional group were 44.74% and 47.37% respectively at 3 and 12 months after operation and were significantly higher those that in reformative group (11.43% and 14.29% respectively) (P<0.05). In addition, the height difference between affected side and normal side in traditional group was significantly larger than that in reformative group (P<0.05). ConclusionBoth single and double Cage implanted into the intervertebral body through unilateral TLIF have good effectiveness. However, double Cage implanted into intervertebral body may hold the height of intervertebral space, reduce the incident rate of Cage subsidence, and prevent sagittal imbalance.
ObjectiveTo investigate the classification and treatment strategies of symptomatic severe osteoporotic vertebral fracture and collapse. MethodsBetween August 2010 and January 2014, 42 patients with symptomatic severe osteoporotic vertebral fracture and collapse were treated, and the clinical data were retrospectively analyzed. According to clinical symptom and imaging materials, 23 cases were classified as type I (local pain, limitation of motion, no neurological symptom, and no obvious deformity), 12 cases as type II (slight neurological symptom and kyphotic Cobb angle ≤ 30°), and 7 cases as type III (severe neurological symptom and kyphotic Cobb angle <30°). In 23 type I patients, 17 underwent percutaneous vertebral augmentation, 6 underwent posterior pedicle screw fixation strengthened with bone cement combined with percutaneous vertebral augmentation. In 12 type II patients, they were treated with local spinal decompression and internal fixation strengthened with bone cement. In 7 type III patients, 5 underwent posterior osteotomy, and 2 underwent one stage posterior approach of vertebral resection and reconstruction. The visual analogue scale (VAS), Oswestry disability index (ODI), and local kyphotic Cobb angle were used to evaluate the neurological function. The complications were recorded. ResultsThe operation was successfully completed in all patients. Wound infection and ketoacidosis secondary to stress blood glucose rise occurred in 1 case of type III patients respectively, and were cured after corresponding treatment; primary healing of wound was obtained in the other patients. The patients were followed up from 6 to 36 months (mean, 11.6 months). The nerve function was improved in 17 cases, and micturition disability was observed in 2 cases. Asymptomatic cement leakage occurred in 13 cases (30.95%) (7 cases in type I, 4 cases in type II, and 2 cases in type III). No bone cement dislocation and internal fixation failure were found during follow-up. The VAS score, ODI, and the local kyphotic Cobb angle at 1 week and last follow-up were significantly improved when compared with preoperative ones (P<0.05), but no significant difference was found between at 1 week and last follow-up (P>0.05). ConclusionIn order to improve the effectiveness and reduce the risk and complications of operation, individualized strategies should be performed according to different types of severe osteoporotic vertebral fracture and collapse.
ObjectiveTo analyze the phasic changes of bone mass, bone turnover markers, and estrogen levels at different time points after glucocorticoid (GC) intervention in rat and their correlation. MethodsThirty-four female 3-month-old Sprague Dawley rats were randomly divided into the following 3 groups:baseline group (n=6), dexamethasone (DXM) group (n=14), and control group (n=14). Rats were injected with DXM at the dose of 0.75 mg/kg, twice a week for 12 weeks in DXM group, with salt solution lavage in control group, and no treatment was given in baseline group. The body mass, adrenal weight, and uterus weight were measured. Bone mineral density (BMD), bone mineral content (BMC), and bone area (BA) of lumbar vertebral and femurs were detected by dual energy X-ray absorptiometry. Meanwhile, the serum levels of N-terminal propeptide of type I procollagen (PINP), C-terminal cross-linking telopeptide of type I collagen (β-CTX), and estrogen levels were determined by ELISA before experiment in baseline group and at 4, 8, and 12 weeks after experiment in control and DXM groups. At last, the correlation was analyzed among body weight, BMD, PINP, β-CTX, estrogen levels, and GC intervention duration of DXM group. ResultsThe body mass, adrenal weight, and uterus weight in DXM group were significantly lower than those in baseline group and control group at all the time points (P<0.05). The levels of PINP and β-CTX elevated slowly in DXM group, significant difference was found at 12 weeks (P<0.05), but no significant difference at the 4 and 8 weeks (P>0.05) when compared with those in baseline group and control group. The estrogen level in DXM group was significantly lower than that in baseline group and control group at all the time points (P<0.05). BMD, BMC, and BA of lumbar vertebral and femurs in DXM group were significantly lower than those in control group at all the time points after GC intervention (P<0.05). Loss of bone mass of L2 and femoral trochanteric region in DXM group was the lowest of all ranges of interest (ROIs). BMC and BA of lumbar vertebrae and BA of femoral shaft in DXM group at 4 weeks were significantly lower than those in baseline group (P<0.05). But there was no significant difference in BMD, BMC, and BA of other lumbar vertebrae and femurs' ROIs between DXM group and baseline group at all the time points (P>0.05). After GC intervention, BMD of lumbar vertebrae and femurs had negative correlation with PINP and β-CTX (P<0.05) and positive correlation with estrogen level (P<0.05). ConclusionThe bone mass decreases rapidly at the early stage after GC intervention and then maintains a low level with time, the levels of bone turnover markers show a progressive increase, and the estrogen levels show a decrease trend. In addition, body weight, the levels of bone turnover markers and estrogen are associated with the change of bone mass.