ObjectiveBy intervening with gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, to explore the downstream signaling pathway of the transcription factor forkhead box O3a (Foxo3a) in C57BL/6 mice who are induced to pulmonary fibrosis with bleomycin, as so to illuminate the possible mechanism of Foxo3a in epithelial-mesenchymal transition (EMT) of pulmonary fibrosis.MethodsThirty C57BL/6 mice aged 6 weeks in half genders were randomly divided into a control group, a bleomycin group and a gefitinib group. The mice in the control group were injected with saline via trachea. The mice in the bleomycin group were injected with bleomycin at a dose of 3 mg/kg via trachea. The mice in the gefitinib group were injected with bleomycin at a dose of 3 mg/kg via trachea and then gastrically perfused with gefitinib (20 mg·kg–1·d–1). 14 days after the treatment, all mice were killed and lung tissue specimens were collected for further detection. Lung tissue sections were stained with hematoxylin eosin and Masson’s trichrome. The mRNA levels of α-smooth muscle actin (α-SMA), E-cadherin, high mobility group protein box 1 (HMGB1), Foxo3a, FoxM1 and Snail1 in the lung tissues were detected by RT-PCR. The protein expressions of α-SMA, E-cadherin, HMGB1, phospho-Foxo3a (p-Foxo3a), Foxo3a, FoxM1 and Snail1 in the lung tissues were determined by western blot.ResultsThe scores of lung inflammation and fibrosis were evidently decreased in the gefitinib group compared with that in the bleomycin group (P<0.01). Compared with bleomycin group, the mRNA level of α-SMA, Snail1 (P<0.01) and HMGB1 (P<0.05) were declined, but mRNA level of E-cadherin (P<0.01), Foxo3a and FoxM1 (P>0.05) were ascendant in the gefitinib group. Meanwhile, western blot analysis showed reduced protein expressions of α-SMA (P<0.05), Snail1(P<0.01), HMGB1 (P<0.05) and p-Foxo3a/Foxo3a (P<0.01) in lung tissues, while expressions of E-cadherin (P<0.05), Foxo3a and FoxM1 proteins (P>0.05) were increased in the gefitinib group.ConclusionsIncreased activity of Foxo3a can down-regulate Snail1, which decreases the expression of α-SMA and increases the expression of E-cadherin, thereby attenuating bleomycin-induced pulmonary fibrosis in mice.
ObjectiveTo study effects of two kinds of epidermal growth factor receptor kinase inhibitors on bleomycin-induced pulmonary fibrosis in mice, and regulation mechanism on oncostatin M (OSM) and downstream signaling pathways.MethodsForty Kunming female mice were randomly divided into a control group, a fibrosis group, a gefitinib group, and an erlotinib group. The mice in the control group were administered with saline aerosol intratracheally. The mice in the fibrosis group were administered with bleomycin at a dose of 3 mg/kg aerosol intratracheally. The mice in the gefitinib group and the erlotinib group were administered with bleomycin at a dose of 3 mg/kg aerosol intratracheally and then gastrically perfused with gefitinib (20 mg·kg–1·d–1) or erlotinib (25 mg·kg–1·d–1). All mice accepted computer tomography examination 14 days after the treatment and then were sacrificed, and the lungs were collected for further detection. The lungs were stained with hematoxylin eosin and Masson’s trichrome, examined with Western blot for pathological examination and expressions of α-smooth muscle actin (α-SMA), OSM, Janus kinase 1 (JAK1), phospho-JAK1 (p-JAK1), signal transducers and activators of transcription 3 (STAT3), and phospho-STAT3 (p-STAT3) proteins.ResultsThe pathological injury of the lung in the gefitinib group and the erlotinib group was significantly relieved compared with that in the bleomycin group. The expressions of α-SMA, OSM, p-JAK1/JAK1, and p-STAT3/STAT3 proteins were also significantly reduced. There were no differences between the above-mentioned indexes between the gefitinib group and the erlotinib group.ConclusionsGefitinib and erlotinib can significantly relieve bleomycin-induced pulmonary fibrosis in mice. The underlying mechanism may be involved in inhibiting expression of OSM and downstream JAK/STAT pathways.