west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "ZHENG Tinghui" 2 results
  • Comparison of stent displacement and displacement force after endovascular aneurysm repair with cross-limb or parallel-limb stent

    This study aims to investigate whether displacement force on stents can accurately represents the displacement of the stent after endovascular aneurysm repair (EVAR) by comparing the measured stent displacement with the displacement forces calculated by computational fluid dynamics (CFD). And the effect of cross-limb and parallel-limb EVAR on stent displacements is further studied. Based on our objective, in this study, ten cross-limb EVAR patients and ten parallel-limb EVAR patients in West China Hospital of Sichuan University were enrolled. Patient-specific models were first reconstructed based on the computed tomography angiography images, then the stent displacements were measured, and the displacement forces acting on the stents were calculated by CFD. Finally, the \begin{document}$ \mathrm{cos}\;\alpha $\end{document} value of the angle between the displacement force and the displacement vector was used to analyze the matching degree between the displacement and the displacement force. The results showed that the displacement forces on cross-limb stents and parallel-limb stents were (2.67 ± 2.14) N and (1.36 ± 0.48) N, respectively. Displacements of stent gravity center, stent displacements relative to vessel, and vessel displacements of cross-limb and parallel-limb stents were (4.43 ± 2.81) mm and (6.39 ± 2.62) mm, (0.88 ± 0.67) mm and (1.11 ± 0.71) mm, (3.55 ± 2.88) mm and (5.28 ± 2.52) mm, respectively. The mean \begin{document}$ \mathrm{cos}\;\alpha $\end{document} for cross-limb and parallel-limb stents were 0.02 ± 0.66 and − 0.10 ± 0.73, respectively. This study indicates that the displacement force on the stent can’t accurately represent the displacement of the stent after EVAR. In addition, the cross-limb EVAR is probably safer and more stable than the parallel-limb EVAR.

    Release date: Export PDF Favorites Scan
  • Construction of finite element model of left atrial diverticulum based on computed tomography and reverse engineering softwares

    This paper aims to explore the feasibility of building a finite element model of left atrial diverticulum (LAD) using reverse engineering software based on computed tomography (CT) images. The study was based on a three-dimensional cardiac CT images of a atrial fibrillation patient with LAD. The left atrium and LAD anatomical features were accurately reproduced by using Geomagic Studio 12 and Mimics 15 reverse engineering software. In addition, one left atrial model with LAD and one without LAD were created with ANSYS finite element analysis software, and the validity of the two models were verified. The results show that it is feasible to establish the LAD finite element model based on cardiac three-dimensional CT images using reverse engineering software. The results of this paper will lay a theoretical foundation for further hemodynamic analysis of LAD.

    Release date:2019-02-18 02:31 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content