Objective To integrate the result of whole genome expression data and whole genome promoter CpG island methylation data, to screen the epigenetic modulated differentially expressed genes from transformed porcine bone marrow mesenchymal stem cells (BMSCs) after long-term cultivation. Methods Bone marrow from 6 landrace pigs, 3-month-old about 50 kg weight, was aspirated from the medullary cavity of the proximal tibia. The BMSCs were isolated, and purified by Ficoll density gradient centrifugation combined with adherent culture method. The transfor mation of BMSCs was tested by several methods including cell morphology observation, karyotype analysis, clone forming in soft agarose, serum requirement assay, and tumor forming in mice. The Agilent Pig 4x44k Gene Expression Microarray was used to investigate the differentially expressed mRNA. The methylated genes expression profile was performed using customized pig methylation chip. The gene expression and DNA methylation profiles were integrated to find out the epigenetic modulated differentially expressed genes, and to complete the bioinformatic analysis. Results BMSCs showed a change in appearance, from the initial spindle shape to a more flatted morphology then to small contact shape. After additional passages, BMSCs gradually acquired recovery of proliferating capacity and transformation properties such as anchorage-independent growth, chromosomal abnormality, and tumor formation in nude mice. The gene chip analysis demonstrated that 257 genes were upregulated and 315 genes were downregulated during long-term cultures as well as multiple signal pathways transduction involved, such as cell cycle, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton, pathways in cancer, and P53. The analysis from methylation chip of coding genes suggested epigenetic regulation was involved in BMSCs spontaneous transformation and play a important role on it; 962 genes were hypermethylated and 1219 genes were hypomethylated, which were involved in the biological process of cellular metabolic, structure, and tumor generation. The combined analysis of genes regulated by methylation in the transformation process of BMSCs found that the methylation changes of the 35 genes were contrary to the direction of expression change (correlation coefficient r=–0.686, P=0.000); in which the methylation level of 21 genes promoter regions were increased while the gene expression decreased, and the methylation level of the 14 genes promoter regions decreased and the gene expression increased. At the same time, KEGG enrichment analysis revealed multiple genes regulated by methylation, involved in stem cell differentiation and multiple cell signaling pathways. Among the 14 down-regulated genes, many of them have the role of regulating the interaction of tumor and immunization, and the change of the methylation status of the CDKN3 promoter region may be closely related to the cell oncology. Conclusion The results deepen our understanding of the crucial role of coding genes methylation modification in BMSCs transformation, and may provide new approach to establish safe criteria for BMSCs clinical applications and transformation prevention.
ObjectiveTo explore the effect and mechanism of miR-21 down-regulated which was induced by H2O2 on osteogenic differentiation of MC3T3-E1 cells.MethodsMC3T3-E1 cells were cultured and passaged, and the 7th generation cells were harvested to use in experiment. The MC3T3-E1 cells were treated with different concentrations (0, 40, 80, 160, and 320 μmol/L) of H2O2. The expression of miR-21 was detected by real-time quantitative PCR (RT-PCR) and the cell viability was determined by MTS. Then the appropriate concentration of H2O2 was obtained. To analyze the effect of H2O2 on osteogenic differentiation of MC3T3-E1 cells, the MC3T3-E1 cells were divided into blank control group (group A), H2O2 group (group B), osteogenic induction group (group C), and H2O2+osteogenic induction group (group D). The expression of miR-21 and the osteogenesis related genes expressions of Runx2, osteopontin (OPN), and collagen type Ⅰ alpha 1 (Col1a1) were detected by RT-PCR. The expression of phosphatase and tensin homolog (PTEN) was detected by Western blot. The extracellular calcium deposition was detected by alizarin red staining. To analyze the effect on osteogenic differentiation of MC3T3-E1 cells after the transfection of miR-21 inhibitor and siRNA-PTEN, the MC3T3-E1 cells were divided into H2O2 group (group A1), H2O2+osteogenic induction group (group B1), H2O2+osteogenic induction+miR-21 inhibitor group (group C1), and H2O2+osteogenic induction+miR-21 inhibitor negative control group (group D1); and H2O2 group (group A2), H2O2+osteogenic induction group (group B2), H2O2+osteogenic induction+siRNA-PTEN negative control group (group C2), and H2O2+osteogenic induction+siRNA-PTEN group (group D2). The osteogenesis related genes were detected by RT-PCR and the extracellular calcium deposition was detected by alizarin red staining.ResultsThe results of MTS and RT-PCR showed that the appropriate concentration of H2O2 was 160 μmol/L. The expression of miR-21 was significantly lower in group B than in group A at 1 and 2 weeks (P<0.05). The expression of miR-21 was significantly lower in group D than in group C at 1 and 2 weeks (P<0.05). The expression of PTEN protein was significantly lower in group C than in groups A and D (P<0.05). The mRNA expressions of Runx2, OPN, and Col1a1 were significantly lower in group D than in group C at 1 and 2 weeks (P<0.05). The extracellular calcium deposition in group D was obviously less than that in group C. The expression of PTEN protein was significantly higher in group C1 than in group D1 (P<0.05). The mRNA expressions of Runx2 and OPN were significantly lower in group C1 than in groups B1 and D1 at 1 and 2 weeks (P<0.05). The mRNA expression of Col1a1 was significantly lower in group C1 than in groups B1 and D1 at 2 weeks (P<0.05). The extracellular calcium deposition in group C1 was obviously less than those in groups B1 and D1. The mRNA expressions of OPN and Col1a1 were significantly higher in group D2 than in groups B2 and C2 at 1 week (P<0.05). The extracellular calcium deposition in group D2 was obviously more than those in groups B2 and C2.ConclusionH2O2 inhibits the osteogenic differentiation of MC3T3-E1 cells, which may be induced by down-regulating the expression of miR-21.