ObjectiveTo explore the feasibility of three-dimensional (3D) bioprinted adipose-derived stem cells (ADSCs) combined with gelatin methacryloyl (GelMA) to construct tissue engineered cartilage.MethodsAdipose tissue voluntarily donated by liposuction patients was collected to isolate and culture human ADSCs (hADSCs). The third generation cells were mixed with GelMA hydrogel and photoinitiator to make biological ink. The hADSCs-GelMA composite scaffold was prepared by 3D bioprinting technology, and it was observed in general, and observed by scanning electron microscope after cultured for 1 day and chondrogenic induction culture for 14 days. After cultured for 1, 4, and 7 days, the composite scaffolds were taken for live/dead cell staining to observe cell survival rate; and cell counting kit 8 (CCK-8) method was used to detect cell proliferation. The composite scaffold samples cultured in cartilage induction for 14 days were taken as the experimental group, and the composite scaffolds cultured in complete medium for 14 days were used as the control group. Real-time fluorescent quantitative PCR (qRT-PCR) was performed to detect cartilage formation. The relative expression levels of the mRNA of cartilage matrix gene [(aggrecan, ACAN)], chondrogenic regulatory factor (SOX9), cartilage-specific gene [collagen type Ⅱ A1 (COLⅡA1)], and cartilage hypertrophy marker gene [collagen type ⅩA1 (COLⅩA1)] were detected. The 3D bioprinted hADSCs-GelMA composite scaffold (experimental group) and the blank GelMA hydrogel scaffold without cells (control group) cultured for 14 days of chondrogenesis were implanted into the subcutaneous pockets of the back of nude mice respectively, and the materials were taken after 4 weeks, and gross observation, Safranin O staining, Alcian blue staining, and collagen type Ⅱ immunohistochemical staining were performed to observe the cartilage formation in the composite scaffold.ResultsMacroscope and scanning electron microscope observations showed that the hADSCs-GelMA composite scaffolds had a stable and regular structure. The cell viability could be maintained at 80%-90% at 1, 4, and 7 days after printing, and the differences between different time points were significant (P<0.05). The results of CCK-8 experiment showed that the cells in the scaffold showed continuous proliferation after printing. After 14 days of chondrogenic induction and culture on the composite scaffold, the expressions of ACAN, SOX9, and COLⅡA1 were significantly up-regulated (P<0.05), the expression of COLⅩA1 was significantly down-regulated (P<0.05). The scaffold was taken out at 4 weeks after implantation. The structure of the scaffold was complete and clear. Histological and immunohistochemical results showed that cartilage matrix and collagen type Ⅱ were deposited, and there was cartilage lacuna formation, which confirmed the formation of cartilage tissue.ConclusionThe 3D bioprinted hADSCs-GelMA composite scaffold has a stable 3D structure and high cell viability, and can be induced differentiation into cartilage tissue, which can be used to construct tissue engineered cartilage in vivo and in vitro.
ObjectiveTo explore the effect of vascular endothelial growth factor 165 (VEGF165)-loaded porous poly (ε-caprolactone) (PCL) scaffolds on the osteogenic differentiation of adipose-derived stem cells (ADSCs).MethodsThe VEGF165-loaded porous PCL scaffolds (written, Sf-g/VEGF) were fabricated through a combination of solvent casting/salt leaching and a thermal-induced phase separation technique and then observed under scanning electron microscope (SEM). The release kinetics was determined by ELISA kit. The ADSCs were isolated from inguinal fat pads of 15 Sprague Dawley rats and cultured. The passage 3-4 ADSCs were seeded into the scaffolds, and then cultured in vitro for 7 days. The passage 3-4 ADSCs were seeded into the porous PCL scaffolds (written, Sf-g) as control. The alizarin red S (ARS) staining, ARS activity assay, and real-time quantitative PCR (RT-PCR) were performed to measure the osteogenic differentiation of ADSCs in vitro. Six Sprague Dawley rats were recruited to prepare the bilateral calvarial bone defects models (n=12). The 12 calvarial bone defects were randomly divided into 3 group (n=4). The defects of negative control group were not treated; the defects of Sf-g group and Sf-g/VEGF group were repaired with ADSCs-Sf-g scaffold complex and ADSCs-Sf-g scaffold complex, respectively. At 8 weeks after transplantation, the Micro-CT and HE staining were conducted to evaluate the osteogenic effects in vivo.ResultsThe morphology of the Sf-g/VEGF scaffolds were porous and well-connected, and the cumulative release rate was approximately 80% in 120 hours. The ARS staining showed that the ARS activity of Sf-g/VEGF group were stronger than that of Sf-g group (t=10.761, P=0.000). The mRNA expressions of osteogenic specific markers [special AT-rich sequence protein 2 (Satb2), alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN)] were significantly higher in Sf-g/VEGF group than in Sf-g group (P<0.05). The results of Micro-CT and HE staining also confirmed the promotion effect of Sf-g/VEGF scaffolds. All defects of 2 groups were partially repaired by new bone tissue, especially in Sf-g/VEGF group. The volume and area of new bone tissue were significantly higher in Sf-g/VEGF group than in Sf-g group (P<0.05).ConclusionThe VEGF165-loaded scaffolds can significantly improve the osteogenic differentiation of ADSCs both in vitro and in vivo.
ObjectiveTo prepare human acellular adipose tissue matrix and to evaluate the cellular compatibility so as to explore a suitable bio-derived scaffold for adipose tissue engineering. MethodsThe adipose tissue was harvested from abdominal skin graft of breast cancer patients undergoing radical mastectomy or modified radical mastectomy, and then was treated with a series of decellularization processes including repeated freeze-thaw, enzyme digestion, and organic solvent extraction. The matrix was examined by histology, immunohistochemistry, DAPI fluorescence staining, and scanning electron microscopy to observe the the removal of cells and to analyze its composition of collagen type IV, laminin, and fibronectin, and microstructure. The 3rd passage human adipose-derived stem cells (hADSCs) were co-cultured with acellular adipose tissue matrix and different concentrations of extracted liquid (100%, 75%, 50%, and 25%). The cytotoxic effects of the matrix were tested by MTT. The biocompatibility of the matrix was detected by live/dead staining and scanning electron microscopy observation. ResultsThe acellular adipose tissue matrix basically maintains intrinsical morphology. The matrix after acellular treatment consisted of extracellular matrix without any cell components, but there were abundant collagen type I; neither DNA nor lipid residual was detected. Moreover, the collagen was the main component of the matrix which was rich in laminin and fibronectin. At 1, 3, and 5 days after co-cultured with hADSCs, the cytotoxic effect of matrix was grade 0-1. The matrix displayed good cell compatibility and proliferation. ConclusionThe acellular adipose tissue matrix prepared by repeated freeze-thaw, enzyme digestion, and organic solvent extraction method remains abundant extracellular matrix and has good cellular compatibility, so it is expected to be an ideal bio-derived scaffold for adipose tissue engineering.
Objective To investigate the effects of titanium modified by ultrasonic acid etching/anodic oxidation (UAT) loaded with endothelial progenitor cells-exosome (EPCs-exo) on proliferation and osteogenic and angiogenic differentiations of adipose-derived stem cells (ADSCs). Methods The adipose tissue and bone marrow of 10 Sprague Dawley rats were harvested. Then the ADSCs and EPCs were isolated and cultured by collagenase digestion method and density gradient centrifugation method, respectively, and identified by flow cytometry. Exo was extracted from the 3rd to 5th generation EPCs using extraction kit, and CD9 and CD81 were detected by Western blot for identification. The three-dimensional printed titanium was modified by ultrasonic acid etching and anodic oxidation to prepare the UAT. The surface characteristics of UAT before and after modification was observed by scanning electron microscopy; UAT was placed in EPCs-exo solutions of different concentrations (100, 200 ng/mL), and the in vitro absorption and release capacity of EPCs-exo was detected by BCA method. Then, UAT was placed in DMEM medium containing different concentrations of EPCs-exo (0, 100, 200 ng/mL), and co-cultured with the 3rd generation ADSCs to construct UAT-ADSCs-exo. Cell morphology by laser confocal microscopy, live/dead cell staining, and cell proliferation were observed to evaluate biocompatibility; alkaline phosphatase (ALP) staining and alizarin red staining, RT-PCR detection of osteogenesis-related genes [osteocalcin (OCN), RUNT-related transcription factor 2 (Runx2), ALP, collagen type 1 (COL-1)] and angiogenesis-related gene [vascular endothelial growth factor (VEGF)], immunofluorescence staining for osteogenesis (OCN)- and angiogenesis (VEGF)-related protein expression were detected to evaluate the effect on the osteogenic and angiogenic differentiation ability of ADSCs. Results Scanning electron microscopy showed that micro-nano multilevel composite structures were formed on the surface of UAT. About 77% EPCs-exo was absorbed by UAT within 48 hours, while EPCs-exo absorbed on the surface of UAT showed continuous and stable release within 8 days. The absorption and release amount of 200 ng/mL group were significantly higher than those of 100 ng/mL group (P<0.05). Biocompatibility test showed that the cells in all concentration groups grew well after culture, and the 200 ng/mL group was better than the other groups, with fully spread cells and abundant pseudopodia, and the cell count and cell activity were significantly higher than those in the other groups (P<0.05). Compared with the other groups, 200 ng/mL group showed enhanced ALP activity and mineralization ability, increased expressions of osteogenic and angiogenic genes (OCN, Runx2, COL-1, ALP, and VEGF), as well as increased expressions of OCN and VEGF proteins, with significant differences (P<0.05). Conclusion EPCs-exo can effectively promote the adhesion, proliferation, and osteogenic and angiogenic differentiation of ADSCs on UAT surface, the effect is the most significant when the concentration is 200 ng/mL.
ObjectiveTo summarize the research progress of the effects of high glucose microenvironment on the biological activity of adipose-derived stem cells (ADSCs).MethodsThe literature on the high glucose microenvironment and ADSCs at home and abroad in recent years was reviewed, and the effects of high glucose microenvironment on the general characteristics, differentiation potential, angiogenesis, and nerve regeneration of ADSCs were summarized.ResultsThe accumulation of advanced glycosylation end products (AGEs) in the high glucose microenvironment led to changes in the biological activities of ADSCs through various pathways, including cell surface markers, proliferation, migration, multi-lineage differentiation, secretory function, and tissue repair ability. The ability of ADSCs to promote angiogenesis and nerve regeneration in high glucose microenvironment is still controversial.ConclusionHigh glucose microenvironment can affect the biological activity of ADSCs, and the effect and mechanism of ADSCs on angiogenesis and nerve regeneration in high glucose microenvironment need to be further studied.
ObjectiveTo investigate the early effects of acellular xenogeneic nerve combined with adipose-derived stem cells (ADSCs) and platelet rich plasma (PRP) in repairing facial nerve injury in rabbits.MethodsThe bilateral sciatic nerves of 15 3-month-old male Sprague-Dawley rats were harvested and decellularized as xenografts. The allogeneic ADSCs were extracted from the neck and back fat pad of healthy adult New Zealand rabbits with a method of digestion by collagenase type Ⅰ and the autologous PRP was prepared by two step centrifugation. The 3rd generation ADSCs with good growth were labelled with CM-Dil living cell stain, and the labelling and fluorescence attenuation of the cells were observed by fluorescence microscope. Another 32 New Zealand rabbits were randomly divided into 4 groups and established the left facial nerve defect in length of 1 cm (n=8). The nerve defects of groups A, B, C, and D were repaired with CM-Dil-ADSCs composite xenogeneic nerve+autologous PRP, CM-Dil-ADSCs composite xenogeneic nerve, xenogeneic nerve, and autologous nerve, respectively. At 1 and 8 weeks after operation, the angle between the upper lip and the median line of the face (angle θ) was measured. At 4 and 8 weeks after operation, the nerve conduction velocity was recorded by electrophysiological examination. At 8 weeks after operation, the CM-Dil-ADSCs at the distal and proximal ends of regenerative nerve graft segment in groups A and B were observed by fluorescence microscopy; after toluidine blue staining, the number of myelinated nerve fibers in regenerated nerve was calculated; the structure of regenerated nerve fibers was observed by transmission electron microscope.ResultsADSCs labelled by CM-Dil showed that the labelling rate of cells was more than 90% under fluorescence microscope, and the labelled cells proliferated well, and the fluorescence attenuated slightly after passage. All the animals survived after operation, the incision healed well and no infection occurred. At 1 week after operation, all the animals in each group had different degrees of dysfunction. The angle θ of the left side in groups A, B, C, and D were (53.4±2.5), (54.0±2.6), (53.7±2.4), and (53.0±2.1)°, respectively; showing significant differences when compared with the healthy sides (P<0.05). At 8 weeks after operation, the angle θ of the left side in groups A, B, C, and D were (61.9±4.7), (56.8±4.2), (54.6±3.8), and (63.8±5.8)°, respectively; showing significant differences when compared with the healthy sides and with the values at 1 week (P<0.05). Gross observation showed that the integrity and continuity of regenerated nerve in 4 groups were good, and no neuroma and obvious enlargement was found. At 4 and 8 weeks after operation, the electrophysiological examination results showed that the nerve conduction velocity was significantly faster in groups A and D than in groups B and C (P<0.05), and in group B than in group C (P<0.05); no significant difference was found between groups A and D (P>0.05). At 8 weeks after operation, the fluorescence microscopy observation showed a large number of CM-Dil-ADSCs passing through the distal and proximal transplants in group A, and relatively few cells passing in group B. Toluidine blue staining showed that the density of myelinated nerve fibers in groups A and D were significantly higher than those in groups B and C (P<0.05), and in group B than in group C (P<0.05); no significant difference was found between groups A and D (P>0.05). Transmission electron microscope observation showed that the myelinated nerve sheath in group D was large in diameter and thickness in wall. The morphology of myelin sheath in group A was irregular and smaller than that in group D, and there was no significant difference between groups B and C.ConclusionADSCs can survive as a seed cell in vivo, and can be differentiated into Schwann-like cells under PRP induction. It can achieve better results when combined with acellular xenogeneic nerve to repair peripheral nerve injury in rabbits.
The biological pacemaker has become a new strategy in the treatment of severe bradycardias, in which a kind of ideal pacemaker cells is a pivotal factor. Here we reviewed the progress in the differentiation of bone-marrow mesenchymal stem cells and adipose-derived stem cells into pacemaker-like cells by means of gene transfer, chemical molecules, co-culture with other cells and specific culture media, and we also analyzed the potential issues to be solved when they are used as seeding cells of biological pacemaker.
Objective To investigate the effect of Kartogenin (KGN) combined with adipose-derived stem cells (ADSCs) on tendon-bone healing after anterior cruciate ligament (ACL) reconstruction in rabbits. Methods After the primary ADSCs were cultured by passaging, the 3rd generation cells were cultured with 10 μmol/L KGN solution for 72 hours. The supernatant of KGN-ADSCs was harvested and mixed with fibrin glue at a ratio of 1∶1; the 3rd generation ADSCs were mixed with fibrin glue as a control. Eighty adult New Zealand white rabbits were taken and randomly divided into 4 groups: saline group (group A), ADSCs group (group B), KGN-ADSCs group (group C), and sham-operated group (group D). After the ACL reconstruction model was prepared in groups A-C, the saline, the mixture of ADSCs and fibrin glue, and the mixture of supernatant of KGN-ADSCs and fibrin glue were injected into the tendon-bone interface and tendon gap, respectively. ACL was only exposed without other treatment in group D. The general conditions of the animals were observed after operation. At 6 and 12 weeks, the tendon-bone interface tissues and ACL specimens were taken and the tendon-bone healing was observed by HE staining, c-Jun N-terminal kinase (JNK) immunohistochemical staining, and TUNEL apoptosis assay. The fibroblasts were counted, and the positive expression rate of JNK protein and apoptosis index (AI) were measured. At the same time point, the tensile strength test was performed to measure the maximum load and the maximum tensile distance to observe the biomechanical properties. Results Twenty-eight rabbits were excluded from the study due to incision infection or death, and finally 12, 12, 12, and 16 rabbits in groups A-D were included in the study, respectively. After operation, the tendon-bone interface of groups A and B healed poorly, while group C healed well. At 6 and 12 weeks, the number of fibroblasts and positive expression rate of JNK protein in group C were significantly higher than those of groups A, B, and D (P<0.05). Compared with 6 weeks, the number of fibroblasts gradually decreased and the positive expression rate of JNK protein and AI decreased in group C at 12 weeks after operation, with significant differences (P<0.05). Biomechanical tests showed that the maximum loads at 6 and 12 weeks after operation in group C were higher than in groups A and B, but lower than those in group D, while the maximum tensile distance results were opposite, but the differences between groups were significant (P<0.05). Conclusion After ACL reconstruction, local injection of a mixture of KGN-ADSCs and fibrin glue can promote the tendon-bone healing and enhance the mechanical strength and tensile resistance of the tendon-bone interface.
ObjectiveTo discuss the possibility of constructing injectable tissue engineered adipose tissue, and to provide a new approach for repairing soft tissue defects.MethodsHuman adipose-derived stem cells (hADSCs) were extracted from the lipid part of human liposuction aspirate by enzymatic digestion and identified by morphological observation, flow cytometry, and adipogenic induction. The hADSCs underwent transfection by lentivirus vector expressing hepatocyte growth factor and green fluorescent protein (HGF-GFP-LVs) of different multiplicity of infection (MOI, 10, 30, 50, and 100), the transfection efficiency was calculated to determine the optimum MOI. The hADSCs transfected by HGF-GFP-LVs of optimal MOI and being adipogenic inducted were combined with injectable fibrin glue scaffold, and were injected subcutaneously into the right side of the low back of 10 T-cell deficiency BALB/c female nude mice (transfected group); non-HGF-GFP-LVs transfected hADSCs (being adipogenic inducted) combined with injectable fibrin glue scaffold were injected subcutaneously into the left side of the low back (untransfected group); and injectable fibrin glue scaffold were injected subcutaneously into the middle part of the neck (blank control group); 0.4 mL at each point. Twelve weeks later the mice were killed and the implants were taken out. Gross observation, wet weight measurement, HE staining, GFP fluorescence labeling, and immunofluorescence staining were performed to assess the in vivo adipogenic ability of the seed cells and the neovascularization of the grafts.ResultsThe cultured cells were identified as hADSCs. Poor transfection efficiency was observed in MOI of 10 and 30, the transfection efficiency of MOI of 50 and 100 was more than 80%, so the optimum MOI was 50. Adipose tissue-like new-born tissues were found in the injection sites of the transfected and untransfected groups after 12 weeks of injection, and no new-born tissues was found in the blank control group. The wet-weight of new-born tissue in the transfected group [(32.30±4.06) mg] was significantly heavier than that of the untransfected group [(25.27±3.94) mg] (t=3.929, P=0.001). The mature adipose cells in the transfected group [(126.93±5.36) cells/field] were significantly more than that in the untransfected group [(71.36±4.52) cells/field] (t=30.700, P=0.000). Under fluorescence microscopy, some of the single cell adipocytes showed a network of green fluorescence, indicating the presence of GFP labeled exogenous hADSCs in the tissue. The vascular density of new-born tissue of the transfected group [(16.37±2.76)/field] was significantly higher than that of the untransfected group [(9.13±1.68)/field] (t=8.678, P=0.000).ConclusionThe hADSCs extracted from the lipid part after liposuction can be used as seed cells. After HGF-GFP-LVs transfection and adipose induction, the hADSCs combined with injectable fibrin glue scaffold can construct mature adipose tissue in vivo, which may stimulate angiogenesis, and improve retention rate of new-born tissue.
ObjectiveTo investigate the microRNA (miRNA) expression profile during chondrogenic differentiation of human adipose-derived stem cells (hADSCs), and assess the roles of involved miRNAs during chondrogenesis. MethodshADSCs were harvested and cultured from donors who underwent elective liposuction or other abdominal surgery. When the cells were passaged to P3, chondrogenic induction medium was used for chondrogenic differentiation. The morphology of the cells was observed by inverted phase contrast microscopy. Alcian blue staining was carried out at 21 days after induction to access the chondrogenic status. The expressions of chondrogenic proteins were detected by ELISA at 0, 7, 14, and 21 days. The miRNA expression profiles at pre- and post-chondrogenic induction were obtained by microarray assay, and differentially expressed miRNAs were verified by real-time quantitative PCR (qRT-PCR). The targets of the miRNAs were predicted by online software programs. ResultshADSCs were cultured successfully and induced with chondrogenic medium. At 21 days after chondrogenic induction, the cells were stained positively for alcian blue staining. At 7, 14, and 21 days after chondrogenic induction, the levels of collogen type Ⅱ, Col2a1, aggrecan, Col10a1, and chondroitin sulfate in induced hADSCs were significantly higher than those in noninduced hADSCs (P<0.05). Eleven differentially expressed miRNAs were found, including seven up-regulated and four down-regulated. Predicted target genes of the differentially expressed miRNAs were based on the overlap from three public prediction algorithms, with the known functions of regulating chondrogenic differentiation of stem cells, selfrenewal, signal transduction, intracellular signaling cascade, and cell cycle control. ConclusionA group of miRNAs and their target genes are identified, which may play important roles in regulating chondrogenic differentiation of hADSCs. These results will facilitate the initial understanding of the molecular mechanism of chondrogenic differentiation in hADSCs and subsequently control hADSCs differentiation, and provide high performance seed cells for cartilage tissue engineering.