west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "attention-deficit/hyperactivity disorder" 3 results
  • Classification of Children with Attention-Deficit/Hyperactivity Disorder and Typically Developing Children Based on Electroencephalogram Principal Component Analysis and k-Nearest Neighbor

    This paper aims to assist the individual clinical diagnosis of children with attention-deficit/hyperactivity disorder using electroencephalogram signal detection method. Firstly, in our experiments, we obtained and studied the electroencephalogram signals from fourteen attention-deficit/hyperactivity disorder children and sixteen typically developing children during the classic interference control task of Simon-spatial Stroop, and we completed electroencephalogram data preprocessing including filtering, segmentation, removal of artifacts and so on. Secondly, we selected the subset electroencephalogram electrodes using principal component analysis (PCA) method, and we collected the common channels of the optimal electrodes which occurrence rates were more than 90% in each kind of stimulation. We then extracted the latency (200~450 ms) mean amplitude features of the common electrodes. Finally, we used the k-nearest neighbor (KNN) classifier based on Euclidean distance and the support vector machine (SVM) classifier based on radial basis kernel function to classify. From the experiment, at the same kind of interference control task, the attention-deficit/hyperactivity disorder children showed lower correct response rates and longer reaction time. The N2 emerged in prefrontal cortex while P2 presented in the inferior parietal area when all kinds of stimuli demonstrated. Meanwhile, the children with attention-deficit/hyperactivity disorder exhibited markedly reduced N2 and P2 amplitude compared to typically developing children. KNN resulted in better classification accuracy than SVM classifier, and the best classification rate was 89.29% in StI task. The results showed that the electroencephalogram signals were different in the brain regions of prefrontal cortex and inferior parietal cortex between attention-deficit/hyperactivity disorder and typically developing children during the interference control task, which provided a scientific basis for the clinical diagnosis of attention-deficit/hyperactivity disorder individuals.

    Release date: Export PDF Favorites Scan
  • Voxel-Based Morphometry in Medicated-naive Boys with Attention-deficit/hyperactivity Disorder (ADHD)

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neuro-developmental disorders occurring in childhood, characterized by symptoms of age-inappropriate inattention, hyperactivity/impulsivity, and the prevalence is higher in boys. Although gray matter volume deficits have been frequently reported for ADHD children via structural magnetic resonance imaging, few of them had specifically focused on male patients. The present study aimed to explore the alterations of gray matter volumes in medicated-naive boys with ADHD via a relatively new voxel-based morphometry technique. According to the criteria of DSM-IV-TR, 43 medicated-naive ADHD boys and 44 age-matched healthy boys were recruited. The magnetic resonance image (MRI) scan was performed via a 3T MRI system with three-dimensional (3D) spoiled gradient recalled echo (SPGR) sequence. Voxel-based morphometry with diffeomorphic anatomical registration through exponentiated lie algebra in SPM8 was used to preprocess the 3D T1-weighted images. To identify gray matter volume differences between the ADHD and the controls, voxel-based analysis of whole brain gray matter volumes between two groups were done via two sample t-test in SPM8 with age as covariate, threshold at P<0.001. Finally, compared to the controls, significantly reduced gray matter volumes were identified in the right orbitofrontal cortex (peak coordinates [-2,52,-25], t=4.01), and bilateral hippocampus (Left: peak coordinates [14,0,-18], t=3.61; Right: peak coordinates [-14,15,-28], t=3.64) of ADHD boys. Our results demonstrated obvious reduction of whole brain gray matter volumes in right orbitofrontal cortex and bilateral hippocampus in boys with ADHD. This suggests that the abnormalities of prefrontal-hippocam-pus circuit may be the underlying cause of the cognitive dysfunction and abnormal behavioral inhibition in medicated-naive boys with ADHD.

    Release date:2017-01-17 06:17 Export PDF Favorites Scan
  • A multi-parameter resting-state functional magnetic resonance imaging study of brain intrinsic activity in attention deficit hyperactivity disorder children

    A great number of studies have demonstrated functional abnormalities in children with attention-deficit/hyperactivity disorder (ADHD), although conflicting results have also been reported. And few studies analyzed homotopic functional connectivity between hemispheres. In this study, resting-state functional magnetic resonance imaging (MRI) data were recorded from 45 medication-naïve ADHD children and 26 healthy controls. The regional homogeneity (ReHo), degree centrality (DC) and voxel-mirrored homotopic connectivity (VMHC) values were compared between the two groups to depict the intrinsic brain activities. We found that ADHD children exhibited significantly lower ReHo and DC values in the right middle frontal gyrus and the two values correlated with each other; moreover, lower VMHC values were found in the bilateral occipital lobes of ADHD children, which was negatively related with anxiety scores of Conners' Parent Rating Scale (CPRS-R) and positively related with completed categories of Wisconsin Card Sorting Test (WCST). Our results might suggest that less spontaneous neuronal activities of the right middle frontal gyrus and the bilateral occipital lobes in ADHD children.

    Release date:2018-08-23 03:47 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content