west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "bioimpedance" 3 results
  • A Digital System for Bioimpedance and Electrical Impedance Tomography Measurement System

    A digital system for bioimpedance and electrical impedance tomography (EIT) measurement controlled by an ATmega16 microcontroller was constructed in our laboratory. There are eight digital electrodes using AD5933 to measure the impedance of the targets, and the data is transmitted to the computer wirelessly through nRF24L01. The structure of the system, circuit design, system testing, vitro measurements of animals' tissues and electrical impedance tomography are introduced specifically in this paper. The experimental results showed that the system relative error was 0.42%, and the signal noise ratio was 76.3 dB. The system not only can be used to measure the impedance by any two electrodes within the frequency of 1-100 kHz in a sweep scanning, but also can reconstruct the images of EIT. The animal experiments showed that the data was valid and plots were fitting with Cole-Cole theory. The testing verified the feasibility and effectiveness of the system. The images reconstructed of a salt-water tank are satisfactory and match with the actual distribution of the tank. The system improves the effectiveness of the front-end measuring signal and the stability of the system greatly.

    Release date: Export PDF Favorites Scan
  • Study on calculation method of internal and external fluid capacity of human cells based on bioimpedance spectroscopy

    Bioelectrical impedance measurement technology is a non-invasive detection technology for extracting human physiological and pathological information. The analysis method of the relationship between bioimpedance and human physiological parameters is an important part of this technology. In order to calculate the internal and external liquid volume of human cells more accurately, based on the Moissl equation for calculating the internal and external fluid volume of human cells, a segmented human bioimpedance spectrum measurement model and an improved calculation method of intracellular and external fluid capacity were proposed. The measurement and calculation experiments of the intracellular and extracellular fluid volume before and after the human body's water intake were designed and compared with the Moissl calculation method. The results show that the improved calculation method can calculate the intracellular and extracellular fluid volumes more effectively, and the relative error is less than 5%, which may provide new ideas or more accurate methods for the analysis of human body components, facilitating the diagnosis and treatment of diseases.

    Release date:2019-08-12 02:37 Export PDF Favorites Scan
  • Study on simulation method of knee hydrops based on biologcal impedance

    The injury of the knee joint is usually accompanied with the generation of hydrops. The volume of hydrops can be used as a reference to evaluate the extent of knee joint injuries. Based on the principle of bioimpedance detection, in this paper, a new method is proposed to detect knee joint hydrops. Firstly, a three-dimensional model of the knee joint was established according to the physiological and anatomical structure of the knee joint. Secondly, a knee impedance detection system was constructed based on the four-electrode theory, and the relationship between the knee impedance change and the volume of hydrops was calculated by linear regression. Finally, the model of rat knee joint hydrops was established, and the knee joint impedance was measured under different hydrops content to deduce the relationship between the fluid content and the knee joint impedance. The fluid volume in the joint was calculated by measuring the knee joint impedance, and the error rate was less than 10%. The experimental results show that the method proposed in this paper can establish the relationship between the impedance of the knee and the volume of fluid and realize the detection of the fluid volume.

    Release date:2020-02-18 09:21 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content