Ligaments are dense fibrous connective tissue that maintains joint stability through bone-to-bone connections. Ligament tears that due to sports injury or tissue aging usually require surgical intervention, and transplanting autologous, allogeneic, or artificial ligaments for reconstruction is the gold standard for treating such diseases in spite of many drawbacks. With the development of materialogy and manufacturing technology, engineered ligament tissue based on bioscaffold is expected to become a new substitute, which can lead to tissue regeneration by simulating the structure, composition, and biomechanical properties of natural tissue. This paper reviewed some recently published in vitro and animal researches focusing on ligament tissue engineering, then evaluated the properties and the effects on tissue repair and reconstruction of fiber structure scaffolds, multi-phase interface scaffolds and bio-derived scaffolds designed by bionic principle and made of different materials, manufacturing techniques and biological factors. Finally, summarization followed by the prospection for future development direction of biological scaffolds in ligament tissue engineering research is given.