west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "biomechanics" 81 results
  • Influence of Different Abduction Angles of Hip Joint on Stress Distribution of Femoral Neck

    The stress distribution and different abduction angles have a close relation to the hip joint. The purpose of this study is to provide biomechanical evidence for the treatment or precaution of hip joint injuries. A three-dimensional model of the hip was established through a series of processing based on the normal human hip joint computed tomograph (CT) image data which were applied to reverse engineering software Mimics14.0 in this study. Firstly, a three-dimensional finite element model was generated with meshing and assigned material and then it was imported into the finite element analysis software Ansys13.0. At last the stress at the femoral neck was solved, computed and analyzed in the positive orthostatic position with 7 hip abduction angles of the hip joint: 0°, 5°, 10°, 15°, 20°, 25°, and 30°, respectively. The results showed that the stresses of femoral neck and outer region were obviously higher than those of front and rear area of the neck of femur in the upright position or abduction of a different angle. With the increase of abduction angle, femoral neck in front of the regional stress value basically unchanged and rear area decreased, but the more obvious changes occurred in the outer region although the stress of inner and outer area also increased gradually. The hip abduction may cause changes in stress distribution because of the femoral neck stress mostly concentrated in the inner and outer cortex, and therefore it has an important role in guiding for hip surgery injury patients to choose the most reasonable solutions and prevention initiatives.

    Release date: Export PDF Favorites Scan
  • Development of on-line lateral stiffness measurement system for anterior cruciate ligament and its influence on anterior cruciate ligament reconstruction

    The anterior cruciate ligament (ACL) reconstruction mostly relies on the experience of surgeons. To improve the effectiveness and adaptability of the tension after ACL reconstruction in knee joint rehabilitation, this paper establishes a lateral force measurement model with relaxation characteristics and designs an on-line stiffness measurement system of ACL. In this paper, we selected 20 sheep knee joints as experimental material for the knee joint stability test before the ACL reconstruction operation, which were divided into two groups for a comparative test of single-bundle ACL reconstruction through the anterolateral approach. The first group of surgeons carried out intraoperative detection with routine procedures. The second group used ACL on-line stiffness measurement system for intraoperative detection. After that, the above two groups were tested for postoperative stability. The study results show that the tension accuracy is (− 2.3 ± 0.04)%, and the displacement error is (1.5 ± 1.8)%. The forward stability, internal rotation stability, and external rotation stability of the two groups were better than those before operation (P < 0.05). But the data of the group using the system were closer to the preoperative knee joint measurement index, and there was no significant difference between them (P > 0.05). The system established in this paper is expected to help clinicians judge the ACL reconstruction tension in the operation process and effectively improve the surgical effect.

    Release date:2021-04-21 04:23 Export PDF Favorites Scan
  • Biomechanical analysis of sitting-up movement of knee joint after robot-assisted unicompartmental knee arthroplasty

    Objective To investigate the effect of Navio robot-assisted unicompartmental knee arthroplasty (UKA) on the biomechanics of knee joint during sitting-up movement, and to determine whether UKA can maintain the biomechanical characteristics of knee joint. Methods The clinical data of 8 patients with medial compartment osteoarthritis treated with medial fixed platform of Navio robot-assisted UKA between January 2018 and January 2019 and had the complete follow-up data were retrospectively analyzed. There were 4 males and 4 females; the age ranged from 58 to 67 years, with an average of 62.3 years. The disease duration was 6-18 months, with an average of 13 months. The varus deformity ranged from 4° to 6°, with an average of 5°; the knee flexion range of motion was 0°-130°, with an average of 110°. All patients had no extension limitation. The imaging data of bilateral knees during sitting-up movement were collected by biplane C-arm X-ray machine at 3 weeks before operation and 7 months after operation. The three-dimensional models of femur and tibia were established by dual-energy CT scanning, and the three-dimensional models of femur and tibia were matched and synchronized with the femur and tibia in X-ray film by automatic matching tracer software. The biomechanical parameters of femur and tibia were measured, including internal rotation/external rotation, varus/valgus, forward/backward displacement of medial and lateral tibia contact center, and lateral compartment joint space. Results Eight patients were followed up 5-7 months, with an average of 6.4 months. In the comparison of the affected side before and after operation, except for the difference of varus/valgus which was significant (t=4.959, P=0.002), the differences in other indicators was not significant (P>0.05). There were significant differences in varus/valgus and internal rotation/external rotation between healthy and affected sides at 3 weeks before operation (P<0.05), and the differences in other indicators was not significant (P>0.05). At 7 months after operation, the difference in the forward and backward displacement of medial tibia contact center was significant (t=3.798, P=0.007), and the differences in other indicators was not significant (P>0.05). Conclusion UKA can effectively correct the varus and valgus of the knee joint, and restore the rotational biomechanical characteristics of the affected knee joint. It does not affect the establishment of the lateral compartment joint space, but the medial and lateral tibia contact center still changes.

    Release date:2021-10-28 04:29 Export PDF Favorites Scan
  • Biomechanical study of knee joint based on coronal plane alignment of the knee

    Objective To establish a finite element model of the knee joint based on coronal plane alignment of the knee (CPAK) typing method, and analyze the biomechanical characteristics of different types of knee joints.Methods The finite element models of the knee joint were established based on CT scan data of 6 healthy volunteers. There were 5 males and 1 female with an average age of 24.2 years (range, 23-25 years). There were 3 left knees and 3 right knees. According to the CPAK typing method, the knees were rated as types Ⅰ to Ⅵ. Under the same material properties, boundary conditions, and axial loading, biomechanical simulations were performed on the finite element model of the knee joint. Based on the Von Mises stress nephogram and displacement nephogram, the peak stresses of the meniscus, femoral cartilage, and tibial cartilage, and the displacement of the meniscus were compared among different types of knee joints. Results The constructed finite element model of the knee joint was verified to be effective, and the stress and displacement results were consistent with previous literature. Under the axial load of 1 000 N, the stress nephogram showed that the stress distribution of the medial and lateral meniscus and tibial cartilage of CPAK type Ⅲ knee joint was the most uneven. The peak stresses of the lateral meniscus and tibial cartilage were 9.969 6 MPa and 2.602 7 MPa, which were 173% and 165% of the medial side, respectively. The difference of peak stress between the medial and lateral femoral cartilage was the largest in type Ⅳ knee joint, and the medial was 221% of the lateral. The displacement nephogram showed that the displacement of the medial meniscus was greater than that of the lateral meniscus except for types Ⅲ and Ⅵ knee joints. The difference between medial and lateral meniscus displacement of type Ⅲ knee joint was the largest, the lateral was 170% of the medial. Conclusion In the same type of joint line obliquity (JLO), the medial and lateral stress distribution of the knee was more uniform in varus and neutral positions than in valgus position. At the same time, the distal vertex of JLO subgroup can help to reduce the uneven medial and lateral stress distribution of varus knee, but increase the uneven distribution of valgus knee.

    Release date: Export PDF Favorites Scan
  • Study on corneal biomechanical properties in eyes with diabetic retinopathy

    ObjectiveTo observe the changes in the biomechanical properties of the cornea of diabetic retinopathy (DR), and analyze its relationship with the degree of DR. MethodsA retrospective study. From September 2020 to February 2021, 83 patients with type 2 diabetes (T2DM) combined with DR treated in the Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, 83 eyes (DR group), 30 patients with T2DM without DR recruited from the outpatient clinic 30 eyes (NDR group) and 30 eyes of non-diabetes patients (NDM group) were included in the study. All left eyes were chose as the study eye. Among the 83 eyes in the DR group, 39 eyes were non-proliferative DR (NPDR) and 44 eyes were proliferative DR (PDR). Based on this, they were divided into NPDR group and PDR group. There was no statistically significant difference in age (t=1.10) and sex ratio (χ2=0.46) among patients in the DR group, NDR group, and NDM group (P>0.05); body mass index (t=3.74), glycosylated hemoglobin (t=35.02) and the length of the eye axis (t=5.51), the difference was statistically significant (P<0.05). The eye response analyzer (ORA) was used to measure the corneal hysteresis (CH), corneal resistance factor (CRF), Goldman related intraocular pressure (IOPg), and corneal compensatory intraocular pressure (IOPcc). The corneal topography was used to measure the central corneal thickness (CCT) of the examined eye. The differences of CCT, IOPcc, IOPg, CH, CRF among multiple groups were compared by one-way analysis of variance. Multiple linear regression was used to analyze the relationship between CH, CRF and related influencing factors in DR patients. ResultsThere were statistically significant differences in CCT, IOPcc, IOPg, CH, and CRF among the eyes of the DR group, NDR group, and NDM group (F=3.71, 5.60, 9.72, 9.02, 21.97; P<0.05). Pairwise comparisons were between groups, CH, CRF: the difference between the DR group and the NDM group and the NDR group was statistically significant (P<0.05); CCT: the difference between the DR group and the NDM group was statistically significant (P<0.05), and The difference in the NDR group was not statistically significant (P>0.05). CCT, CH, CRF: the difference between the NDR group and the NDM group was not statistically significant (P>0.05). The results of multiple linear regression analysis showed that CCT and IOPcc in DR patients were independent influencing factors of CH [CCT: β=0.01, 95% confidence interval (CI) 0.01-0.03, P=0.013; IOPcc: β=-0.15, 95%CI -0.25--0.05, P=0.005]; Age, CCT, IOPcc were independent influencing factors of CRF [Age: β=-0.06, 95%CI -0.09--0.03, P<0.001; CCT: β=0.01, 95%CI 0.00-0.02, P=0.049; IOPcc: β=0.16, 95%CI 0.07-0.25, P=0.001]. The comparison of CCT, CH, CRF, adjusted CH, and adjusted CRF of the eyes in the NDR group, NPDR group, and PDR group were statistically significant (F=3.76, 5.36, 12.61, 6.59, 10.41; P<0.05). Pairwise comparison between groups, CH, CRF, adjusted CH, adjusted CRF: the difference between the NPDR group, the PDR group and the NDR group was statistically significant (P<0.05), and the difference between the PDR group and the NPDR group was not statistically significant (P>0.05); CCT: The difference between NPDR group and NDR group, PDR group and NPDR group was not statistically significant (P>0.05), and the difference between PDR group and NDR group was statistically significant (P<0.05). ConclusionThe CH and CRF of eyes with T2DM and DR are elevated; CCT and IOPcc are independent influencing factors of CH, and age, CCT and IOPcc are independent influencing factors of CRF.

    Release date:2022-02-17 02:00 Export PDF Favorites Scan
  • Biomechanical research of anterior cruciate ligament fixation by tibial interfacial screw combined with bone tunnel crossing technology

    ObjectiveTo compare the strength difference between the interfacial screw and the interfacial screw combined with bone tunnel crossing technology to fix the tibial end of ligament during anterior cruciate ligament (ACL) reconstruction through the biomechanical test.MethodsTwenty fresh frozen pig tibia were randomly divided into two groups (n=10) to prepare ACL reconstruction models. The graft tendons in the experimental group were fixed with interfacial screw combined with bone tunnel crossing technology, and the graft tendons in the control group were fixed with interfacial screw. The two groups of specimens were fixed in the high-frequency dynamic mechanics test system M-3000, and the length change (displacement), ultimate load, and stiffness of graft tendons were measured through the reciprocating test and load-failure test.ResultsThe results of reciprocating test showed that the displacement of the experimental group was (3.06±0.58) mm, and that of the control group was (2.82±0.46) mm, and there was no significant difference between the two groups (t=0.641, P=0.529). The load-failure test results showed that the stiffness of the experimental group and the control group were (95.39±13.63) and (91.38±14.28) N/mm, respectively, with no significant difference (t=1.021, P=0.321). The ultimate load of the experimental group was (743.15±173.96) N, which was significantly higher than that of the control group (574.70±74.43) N (t=2.648, P=0.016).ConclusionIn ACL reconstruction, the fixation strength of tibial end with interface screw combined with bone tunnel crossing technology is obviously better than that of interface screw alone.

    Release date:2021-10-28 04:29 Export PDF Favorites Scan
  • Biomechanical effect of anteromedial coronoid facet fracture and lateral collateral ligament complex injury on posteromedial rotational stability of elbow

    Objective To investigate the effect of anteromedial coronoid facet fracture and lateral collateral ligament complex (LCLC) injury on the posteromedial rotational stability of the elbow joint. Methods The double elbows were obtained from 4 fresh adult male cadaveric specimens. Complete elbow joint (group A,n=8), simple LCLC injury (group B,n=4), simple anteromedial coronoid facet fracture (group C,n=4), and LCLC injury combined with anteromedial coronoid facet fracture (group D,n=8). The torque value was calculated according to the load-displacement curve. Results There was no complete dislocation of the elbow during the experiment. The torque values of groups A, B, C, and D were (10.286±0.166), (5.775±0.124), (6.566±0.139), and (3.004±0.063) N·m respectively, showing significant differences between groups (P<0.05). Conclusion Simple LCLC injury, simple anteromedial coronoid facet fracture, and combined both injury will affect the posteromedial rotational stability of the elbow.

    Release date:2017-03-13 01:37 Export PDF Favorites Scan
  • RELATIONSHIP BETWEEN ANATOMY OF KNEE COLATERAL LIGAMENT AND GEOMETRY OF POSTERIOR FEMORAL CONDYLAR ARTICULAR SURFACE

    Objective To analyze the relationship between the collateral ligament attachment and the epicondylar axis with rotational alignment of the femoral component in the total knee arthroplasty(TKA).Methods Twenty normal cadaver knee joints were anatomized and 2 holes were drilled on the distal femur from the deep and superficial insertions of the medial collateral ligaments to the lateral condylar part, respectively. Then, all the knees were scanned by MRI on the sagittal plane, making the drilled hole located relatively to the posterior condylar joint surface on the axial plane, and the posterior condylar angle (PCA) and thecondylar twist angle (CTA) were measured.Results The colateral ligament had the deep and superficial parts, and the deep part was strained during the knee flexing. PCA and CTA were 4.50±1.26° and 7.10±0.30° respectively, and there was a significant difference between them(P<0.05), which were significantly greater than those reported abroad. On the sagittal plane, there wasno significant difference between the radiuses of the posterior medial and lateral condylar circles (Pgt;0.05). The distance from the center of the posterior condylar circle to the deep insertion of the medial collateral ligament (MCL) (d1) was 4.22±0.20 mm, and the distance to the superficial insertionof MCL (d2) was 7.36±0.13 mm. The difference between d1 and d2 was significant(Plt;0.05). Conclusion The center of the posterior condylar circle passes from the deep insertion of the collateral ligament, which can be regarded as a fixed flexionextension axis of the knee. By releasing the different parts of the collateral ligaments, the balance of the flexion and extension gap canbe obtained, and then varus, valgus or flexed contracture deformity of the kneecan be realigned. Besides, the rotational orientation of the femoral prothesis can be made by a reference to the epicondylar insertion of the collateral ligament.

    Release date:2016-09-01 09:26 Export PDF Favorites Scan
  • Development and clinical application of ankle prosthesis

    ObjectiveTo review the development and clinical application of ankle prosthesis.MethodsThe recent literature on ankle prosthesis design and clinical application was reviewed and analyzed. ResultsCompared with the hip and knee prostheses, the ankle prosthesis develops slowly and has been developed to the third generation. The ankle joint has a special structure of multi-axis movement. The design of the first and second generations of prostheses is not conformed to the biomechanics of the ankle. The third generation of prosthesis is more conform to the characteristics of ankle biomechanics, with high postoperative survival rate and satisfactory clinical outcome. ConclusionAt present, the survival rate of ankle prosthesis is low, and there is still much room for improvement in biomechanics, materials, and other aspects.

    Release date:2019-11-21 03:35 Export PDF Favorites Scan
  • Biomechanical study of polymethyl methacrylate bone cement and allogeneic bone for strengthening sheep vertebrae

    ObjectiveTo investigate the feasibility and mechanical properties of polymethyl methacrylate (PMMA) bone cement and allogeneic bone mixture to strengthen sheep vertebrae with osteoporotic compression fracture.MethodsA total of 75 lumbar vertebrae (L1-L5) of adult goats was harvested to prepare the osteoporotic vertebral body model by decalcification. The volume of vertebral body and the weight and bone density before and after decalcification were measured. And the failure strength, failure displacement, and stiffness were tested by using a mechanical tester. Then the vertebral compression fracture models were prepared and divided into 3 groups (n=25). The vertebral bodies were injected with allogeneic bone in group A, PMMA bone cement in group B, and mixture of allogeneic bone and PMMA bone cement in a ratio of 1∶1 in group C. After CT observation of the implant distribution in the vertebral body, the failure strength, failure displacement, and stiffness of the vertebral body were measured again.ResultsThere was no significant difference in weight, bone density, and volume of vertebral bodies before decalcification between groups (P>0.05). After decalcification, there was no significant difference in bone density, decreasing rate, and weight between groups (P>0.05). There were significant differences in vertebral body weight and bone mineral density between pre- and post-decalcification in 3 groups (P<0.05). CT showed that the implants in each group were evenly distributed in the vertebral body with no leakage. Before fracture, the differences in vertebral body failure strength, failure displacement, and stiffness between groups were not significant (P>0.05). After augmentation, the failure displacement of group A was significantly greater than that of groups B and C, and the failure strength and stiffness were less than those of groups B and C, the failure displacement of group C was greater than that of group B, and the failure strength and stiffness were less than those of group B, the differences between groups were significant (P<0.05). Except for the failure strength of group A (P>0.05), the differences in the failure strength, failure displacement, and stiffness before fracture and after augmentation in the other groups were significant (P<0.05).ConclusionThe mixture of allogeneic bone and PMMA bone cement in a ratio of 1∶1 can improve the strength of the vertebral body of sheep osteoporotic compression fractures and restore the initial stiffness of the vertebral body. It has good mechanical properties and can be used as one of the filling materials in percutaneous vertebroplasty.

    Release date:2021-04-27 09:12 Export PDF Favorites Scan
9 pages Previous 1 2 3 ... 9 Next

Format

Content