ObjectiveTo evaluate the effect of a novel micro-arc oxidation (MAO) coated magnesium-zinc-calcium (Mg-Zn-Ca) alloy scaffold/autologous bone particles to repair critical size bone defect (CSD) in rabbit and explore the novel scaffold in vivo corrosion resistance and biocompatibility.MethodsSeventy-two New Zealand white rabbits were randomly divided into 3 groups (n=24), group A was uncoated Mg-Zn-Ca alloy scaffold group, group B was 10 μm MAO coated Mg-Zn-Ca alloy scaffold group, and group C was control group with only autologous bone graft. The animals were operated to obtain bilateral ulnar CSD (15 mm in length) models. The bone fragment was removed and minced into small particles and were filled into the scaffolds of groups A and B. Then, the scaffolds or autologous bone particles were replanted into the defects. The animals were sacrificed at 2, 4, 8, and 12 weeks after surgery (6 rabbits each group). The local subcutaneous pneumatosis was observed and recorded. The ulna defect healing was evaluated by X-ray image and Van Gieson staining. The X-ray images were assessed and scored by Lane-Sandhu criteria. The percentage of the lost volume of the scaffold (ΔV) and corrosion rate (CR) were calculated by the Micro-CT. The Mg2+ and Ca2+ concentrations were monitored during experiment and the rabbit liver, brain, kidney, and spleen were obtained to process HE staining at 12 weeks after surgery.ResultsThe local subcutaneous pneumatosis in group B was less than that in group A at 2, 4, and 8 weeks after surgery, showing significant differences between 2 groups at 2 and 4 weeks after surgery (P<0.05); and the local subcutaneous pneumatosis was significantly higher in group B than that in group A at 12 weeks after surgery (P<0.05). The X-ray result showed that the score of group C was significantly higher than those of groups A and B at 4 and 8 weeks after surgery (P<0.05), and the score of group B was significantly higher than that of group A at 8 weeks (P<0.05). At 12 weeks after surgery, the scores of groups B and C were significantly higher than that of group A (P<0.05). Meanwhile, the renew bone moulding of group B was better than that in group A at 12 weeks after surgery. Micro-CT showed that ΔV and CR in group B were significantly lower than those in group A (P<0.05). Van Gieson staining showed that group B had better biocompatibility and osteanagenesis than group A. The Mg2+ and Ca2+ concentrations in serum showed no significant difference between groups during experiments (P>0.05). And there was no obvious pathological changes in the liver, brain, kidney, and spleen of the 3 groups with HE staining at 12 weeks.ConclusionThe MAO coated Mg-Zn-Ca alloy scaffold/autologous bone particles could be used to repair CSD effectively. At the same time, 10 μm MAO coating can effectively improve the osteanagenesis, corrosion resistance, and biocompatibility of Mg-Zn-Ca alloy scaffold.
Objective To investigate the early-term effectiveness of extra-large uncemented acetabular components for hip revision in the treatment of extensive acetabular bone defect. Methods Between September 2008 and May 2012, 13 patients (13 hips) with extensive acetabular bone defect underwent first hip revision using extra-large uncemented acetabular components (Jumbo cup). The diameter of Jumbo cup was larger than or equal to 64 mm for male and 60 mm for female. There were 4 males and 9 females with an average age of 64.7 years (range, 58-84 years). The period from primary arthroplasty to revision was 3-16 years (mean, 9.6 years). According to Paprosky classification, acetabular bone defect was rated as stage IIA in 2 cases, as stage IIB in 5 cases, as stage IIC in 4 cases, and as stage IIIA in 2 cases. The preoperative vertical distance from the center of involved femoral head to interteardrop line was (21.2 ± 6.1) mm longer than that of normal side. The Harris score and the rotation center of hip were evaluated preoperatively and postoperatively. Results Healing of incision by first intention was obtained in all patients, and no complication of dislocation, infection, and injury of sciatic nerve or femoral nerve occurred. The duration of follow-up ranged from 13 to 40 months (mean, 23.5 months). Partial or complete pain relief was achieved in all patients. The other patients could walk independently and restored to their routine jobs except for 1 case of hemiplegia caused by acute cerebral infarction at 3 months after surgery. In 5 patients with bone implantation, with the prolonging follow-up, the allograft could integrate with the host bone without absorption, and the bone fusion time was 9-35 months (mean, 14.5 months). At last follow-up, the X-ray films revealed that the vertical distance from the center of involved femoral head to interteardrop line was (6.0 ± 3.1) mm longer than that of normal side, which was significantly reduced when compared with preoperative value (t=11.13, P=0.00). No periprosthetic transparent region, prosthesis displacement, or screw breakage occurred. The Harris score was significantly increased from 30.4 ± 8.8 preoperatively to 85.1 ± 3.2 at last follow-up (t=22.11, P=0.00). Conclusion The application of extra-large uncemented acetabular components could be an effective technique for the reconstruction of extensive acetabular bone defect, and gain a good early-term effectiveness. The long-term survival rate of prostheses needs to be followed up.
ObjectiveTo investigate the short-term effectiveness of three-dimensional (3D) printed trabecular metal pads for Paprosky type Ⅲ acetabular defect in hip revision.MethodsBetween August 2014 and December 2015, the 3D printed trabecular metal pads were used to repair Paprosky type Ⅲ acetabular defects and reconstruct the annular structure of the acetabulums in 5 cases of primary hip revision. There were 3 males and 2 females, aged from 50 to 72 years, with an average age of 66 years. The time from initial replacement to revision was 10 to 18 years, with an average of 14.4 years. The types of prostheses in primary replacement were non-cemented in 3 cases and cemented in 2 cases. The types of acetabular bone defects were Paprosky type ⅢA in 3 cases and Paprosky type ⅢB in 2 cases. The preoperative Harris score was 34.23±11.67. The height of rotation center of affected hip was (38.17±8.87) mm and the horizontal position was (35.62±9.12) mm.ResultsThe operation time was 120-180 minutes, with an average of 142 minutes. The intraoperative bleeding volume was 800-1 700 mL, with an average of 1 100 mL. Five patients were followed up 18-24 months (mean, 21 months). At last follow-up, the Harris score was 79.82±8.70, which was significantly higher than that before operation (t=16.991, P=0.000). At 1 week after operation, the abduction angle of acetabular cup was 38-42° (mean, 39.4 °) and the anteversion angle was 13-18 ° (mean, 14.6°). The height and horizontal position of rotation center of affected hip were (22.08±8.33) mm and (29.03±6.28) mm, respectively, showing significant differences when compared with those before operation (P<0.05); there was no significant difference when compared with those of healthy hip [(28.62±7.73), (27.29±4.22) mm] (P>0.05). During the follow-up, there was no complication such as prosthesis loosening, dislocation, or periprosthetic fracture.ConclusionIn hip revision, 3D printed trabecular metal pads can repair Paprosky type Ⅲ acetabular defect, reconstruct the structure of acetabulum, provide a stable supporting structure for the acetabular cup, reconstruct the relatively normal rotation center of the hip joint, avoid iatrogenic bone loss, and achieve satisfactory functional recovery of the hip. The long-term effectiveness needs further follow-up.
Objective To investigate the clinical effects of repairing massive bone defects in limbs by using vascularized free fibular autograft compoundingmassive bone allografts. Methods From January 2001 to December 2003, large bone defects in 19 patients (11 men and 8 women, aging from 6 to 35 years) were repaired by vascularized free fibular transplant with a monitoringflap compounding massive deep frozen bone allografts. The length of bone defects were 12 to 25 cm (16.6 cm on average), of vascularized free fibular 15 to 28 cm (18.3 cm on average), and of massive bone allografts 11 to 24 cm (16.1 cm on average). Thelocation of massive bone defects were humerus in 1 case, femur in 9 cases and tibia in 9 cases. Results After followup of 5 to 36 onths (18.2 months on average), wounds of donor and recipient sites were healed at Ⅰstage, monitoringflaps were alive, no obvious eject reaction of massive bone allografts was observed and no complications occurred in donor limbs. The radiographic evidence showed union in 15 patients 3 months and 3 patients 8 months after operation. One case of malignant synovioma of left lower femur recurred and amputation was performed 2.5 months after surgery. Internal fixation was removed in 5 patients, and complete bone unions werefound 1 year postoperatively. No massive bone allografts was absorbed or collapsed. Conclusion With strict indication, vascularized free fibular autograft compounding massive bone allografts, as an excellent method of repairing massive bone defects in limbs, can not only accelerate bone union but also activate and changer the final results of massive bone allografts from failure.
With the developing of three-dimensional (3D) printing technology, it is widely used in the treatment of bone tumors in the clinical orthopedics. Because of the great individual differences in the location of bone tumor, resection and reconstruction are difficult. Based on 3D printing technology, the 3D models can be prepared to show the anatomical part of the disease, so that the surgeons can create a patient-specific operational plans based on better understand the local conditions. At the same time, preoperative simulation can also be carried out for complex operations and patient-specific prostheses can be further designed and prepared according to the location and size of tumor, which may have more advantages in adaptability. In this paper, the domestic and international research progress of 3D printing technology in the treatment of limb bone tumors in recent years were reviewed and summarized.
Objective To study the operative methods and therapeutic effects of acetabulum reinforcement ring in the reconstruction of acetabular defects in primary and revisional artificial hip replacement. Methods From November 2000 to July 2005, 14 cases (15 hips) of severe acetabular defects in artificial hip replacement were treated with acetabulum reinforcement ring combined autogenous or allogenic bone transplantation, including 7 males and 8 females aged 34-72 years with an average of 55 years. Among them, 9 cases (9 hips) underwent artificial hip joint revision, which was 3-22 years (average8.9 years) far away from their primary replacement, and 5 cases (6 hi ps) received primary replacement, including 1 case of rheumatoid arthritis of both hips, 1 osteoarthritis caused by acetabular dysplasia, 1 femoral head resection due to debridement of hi p infection, 1 nonunion of acetabulum old fracture with the center dislocation of femoral head and 1 old acetabulum fracture. The disease course was 2-25 years (average 11.6 years). According to the American Academy of Orthopaedic Surgeons (AAOS) classification, the acetabulum defects of 7 hips were categorized into Type II, 6 hips were Type III and 2 hips were Type IV. Harris score was (59.1 ± 15.4) points preoperatively. Results All wounds were healed by first intention. The symptom of sciatic nerve simulation was occurred in 1 case and was rel ieved after taking neuroprotective drug for 5 months. All the cases were followed up for 33-90 months (average 51.3 months). Harris score at the final follow-up was (81.9 ± 10.4) points, indicating there was a significant difference between before and after operation (P lt; 0.01). X-ray film demonstrated that the displacement of acetabulum reinforcement ring and acetabular cup was less than 5 mm, the rotation was less than 5°, and there was no progressive radiolucent zone around acetabulum and screw. Conclusion Acetabulum reinforcement ring is beneficial to reconstruct severe acetabular defects, improve hip joints’ function and provide primary stabil ity for putting acetabular cup into an ideal biomechanical position.
Objective To investigate the effectiveness of double EndoButton suture fixation Latarjet procedure in the treatment of shoulder anterior dislocation with glenoid bone defect caused by military training injuries.MethodsThe clinical data of 14 patients with anterior shoulder dislocation with glenoid bone defect due to military training injuries who met the selection criteria and admitted between August 2021 and December 2022 were retrospectively analyzed. All patients were male, the age ranged from 21 to 38 years, with an average of 26.8 years. The time from initial dislocation to operation was 6-15 months, with an average of 10.2 months. Anterior shoulder dislocation occurred 5-12 times, with an average of 8.2 times. All glenoid bone defects were more than 10%, including 5 cases of 10%-15%, 8 cases of 15%-20%, and 1 case of 24%. All patients were treated by double EndoButton suture fixation Latarjet procedure. The operation time and complications were recorded. The shoulder function and pain were evaluated by the American Association for Shoulder and Elbow Surgery (ASES) score, Rowe score, Instability Severity Index Score (ISIS), and visual analogue scale (VAS) score before and after operation. The range of motion of the shoulder was recorded, including forward flexion, 0° external rotation, and abduction 90° external rotation. The position, healing, and resorption of the bone mass were evaluated by three-dimensional CT of shoulder joint after operation. Results All patients successfully completed the operation, and the operation time was 100-150 minutes, with an average of 119.7 minutes. There was no complications such as infection, vascular and nerve injury. All patients were followed up 12-20 months, with an average of 15.6 months. During the follow-up, 4 patients had bone mass separation, absorption, and recurrent anterior dislocation, and the shoulder joint fear test was positive. Imaging of the remaining patients showed that the bone mass healed well, no anterior dislocation recurrence occurred, and the healing time was 3-7 months (mean, 4.7 months). At last follow-up, the range of motion, ASES score, Rowe score, ISIS score, and VAS score of the patients significantly improved when compared with those before operation (P<0.05). ConclusionThe effectiveness of double EndoButton suture fixation Latarjet procedure for the treatment of anterior shoulder dislocation with glenoid bone defect caused by military training injury is satisfactory.
Objective To evaluate the effectiveness of induced membrane technique in the treatment of infectious bone defect. Methods Thirty-six patients (37 bone lesions) with infectious bone defects were treated with induced membrane technique between January 2011 and June 2014. There were 28 males and 8 females with an average age of 36 years (range, 20-68 years). All bone defects were post-traumatic infectious bone defect. The bone defect was located at the tibia and fibula in 24 cases (25 bone lesions), at femurs in 6 cases (6 bone lesions), at ulnas and radii in 2 cases (2 bone lesions), at calcanei in 3 cases (3 bone lesions), and at clavicle in 1 case (1 bone lesion). The average time between onset and the treatment of induced membrane technique was 6.2 months (range, 0.5-36.0 months); 15 patients were acute infections (disease duration was less than 3 months). At the first stage, after the removal of internal fixator (applicable for the patients who had internal fixation), complete debridement of infection necrotic bone tissue and surrounding soft tissue was performed and the bone defects were filled with antibiotic-impregnated cement spacers. If the bone was unstable after debridement, external fixator or plaster could be used for stabilization. Patients received sensitive antibiotics postoperatively. At the second stage (usually 6-8 weeks later), the cement spacer were removed, with preservation of the induced membrane formed by the spacer, and filled the bone defect with autologous iliac bone graft within the membrane. Results The hospitalization time after debridement was 17-30 days (mean, 22.2 days), and the hospitalization time after the second stage was 7-14 days (mean, 10 days). All the flaps healed uneventfully in 16 cases treated with local flap transposition or free flap grafting after debridement. One patient of femur fracture received Ilizarov treatment after recurrence of infection at 11 months after operation; 1 patient of distal femoral fracture received amputation after recurrence of infection at 1 month after operation; 1 patient of distal end of tibia and fibula fractures received ankle arthrodesis after repeated debridements due to the recurrence of infection; 1 patient of tibia and fibula fractures lost to follow-up. The other 32 patients (33 bone lesions) were followed up 1-5 years (mean, 2 years) without infection recurrence, and the infection control rate was 91.7% (33/36). All the patients had bony union, and the healing time was 4-12 months (mean, 7.5 months); no refracture occurred. One patient of femur bone defect had a lateral angulation of 15° and leg discrepancy of 1.5 cm. Superficial pin infection was observed in 7 cases and healed after intensive wound care and oral antibiotics. Adjacent joint function restriction were observed in 6 cases at last follow-up. Conclusion Induced membrane technique is a simple and reliable technique for the treatment of infectious bone defect. The technique is not limited to the size of the bone defect and the effectiveness is satisfactory.
With the continuous progress of materials science and biology, the significance of biomaterials with dual characteristics of materials science and biology is keeping on increasing. Nowadays, more and more biomaterials are being used in tissue engineering, pharmaceutical engineering and regenerative medicine. In repairing bone defects caused by trauma, tumor invasion, congenital malformation and other factors, a variety of biomaterials have emerged with different characteristics, such as surface charge, surface wettability, surface composition, immune regulation and so on, leading to significant differences in repair effects. This paper mainly discusses the influence of surface charge of biomaterials on bone formation and the methods of introducing surface charge, aiming to promote bone formation by changing the charge distribution on the surface of the biomaterials to serve the clinical treatment better.
ObjectiveTo study the effectiveness of trifocal bone transport by using monolateral rail system in the treatment of bone defects caused by post-traumatic tibial osteomyelitis.MethodsThe clinical data of 28 patients with tibial defects caused by post-traumatic osteomyelitis treated with trifocal bone transport technique by using monolateral rail system between January 2012 and June 2017 were retrospectively analyzed. There were 26 males and 2 females, aged 22-59 years (mean, 41.3 years). The causes of injury included 13 cases of traffic accident injury, 9 cases of falling from height, 4 cases of heavy object injury, and 2 cases of crushing injury. The disease duration was 4.5-17.0 months (mean, 7.1 months). The length of bone defect was 6.5-16.8 cm (mean, 10.3 cm). And the range of soft tissue defect ranged from 3.5 cm×2.0 cm to 18.0 cm×11.0 cm. The bone transporting time, external fixation time, duration of regenerate consolidation, and external fixation index were recorded, and the complications were observed. At last follow-up, the bone and functional results were evaluated according to the criteria given by Association for the Study and Application of the Method of the Ilizarov (ASAMI).ResultsAll patients were successfully followed up after removing the external fixator with an average of 35 months (range, 24-65 months). The bone transporting time was 41-136 days (mean, 60.2 days), the external fixation time was 7.5-20.0 months (mean, 13.4 months), the external fixation index was 1.1-1.9 months/cm (mean, 1.4 months/cm), the duration of regenerate consolidation was 6.0-16.5 months (mean, 10.5 months). Pin tract infection occurred in 12 cases, delayed union on docking site was occurred in 9 cases, axial deviation was observed in 2 cases, poor regenerate consolidation was presented in 1 case, and refracture on docking site after fixator removal was occurred in 1 case. There was no recurrence of infection, amputation, vascular and neurologic complications, and osteofascial compartment syndrome. At last follow-up, according to ASAMI criterion, the bone healing results were excellent in 17 cases, good in 7 cases, and fair in 4 cases, with an excellent and good rate of 85.7%; the functional results were excellent in 15 cases, good in 10 cases, and fair in 3 cases, with an excellent and good rate of 89.3%.ConclusionTrifocal bone transport by using monolateral rail system is an effective method in the treatment of bone defect caused by post-traumatic osteomyelitis which can reduce bone transport time, external fixation time, and complications.