Brain aging can affect the strength of functional connectivity between brain regions. In recent years, studies have shown that functional connectivity is fluctuant over time, and can reflect more physiological and pathological information. Therefore, in the study resting state functional magnetic resonance imaging (fMRI) data of 32 elderly subjects and 36 younger subjects were selected, and the sliding window technique was used to estimate dynamic functional connectivity network. Then, the dependency of fluctuating energy difference on frequency band was studied using wavelet packet analysis, conducting the linear regression with age at the same time. Results showed that the fluctuating energy in older group was significantly higher than that in the young group in low frequency, and it was significantly lower than that in the young people in high frequency. These results suggested that the dynamic functional connectivity between networks in the elderly exist slow wave phenomenon, which may be related to the decreased reaction rate of the elderly. This article provides new ideas and methods for the research about brain aging, and promotes a theoretical basis for further understanding of the physiological significance of brain dynamic functional connectivity.
The purpose of this study is to investigate the change of the whole brain event-related potentials(P300) in normal brain aging based on N-back cognitive tasks. The P300 of 15 normal young people and 10 normal old people were evaluated based on N-back cognitive tasks and analyzed. The results showed that the P300 latency of old people was longer in whole brain than young people, and amplitude was increased in the frontal-central region, while significantly increased in the pre-frontal region in the same load cognitive tasks. With the cognitive task load increasing, the amplitude of old people in high-load task was higher in the whole brain than that in low-load task, mainly in in the frontal region, but the difference was not statistically significant. The latency in the high-load task was shorter in the frontal-central region of right brain than the low-load task, and the difference was statistically significant. Thus, P300 showed that the normal brain aging process is mainly reflected in the pre-frontal region, and the high-load cognitive task could better reflect the change of brain function compared with the low-load cognitive task. The finding is of revelatory meaning for diagnosis of early dementia in patients.
UK Biobank (UKB) is a forward-looking epidemiological project with over 500, 000 people aged 40 to 69, whose image extension project plans to re-invite 100, 000 participants from UKB to perform multimodal brain magnetic resonance imaging. Large-scale multimodal neuroimaging combined with large amounts of phenotypic and genetic data provides great resources to conduct brain health-related research. This article provides an in-depth overview of UKB in the field of neuroimaging. Firstly, neuroimage collection and imaging-derived phenotypes are summarized. Secondly, typical studies of UKB in neuroimaging areas are introduced, which include cardiovascular risk factors, regulatory factors, brain age prediction, normality, successful and morbid brain aging, environmental and genetic factors, cognitive ability and gender. Lastly, the open challenges and future directions of UKB are discussed. This article has the potential to open up a new research field for the prevention and treatment of neurological diseases.