west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "brain computer interface" 8 results
  • Research on the Methods for Electroencephalogram Feature Extraction Based on Blind Source Separation

    In the present investigation, we studied four methods of blind source separation/independent component analysis (BSS/ICA), AMUSE, SOBI, JADE, and FastICA. We did the feature extraction of electroencephalogram (EEG) signals of brain computer interface (BCI) for classifying spontaneous mental activities, which contained four mental tasks including imagination of left hand, right hand, foot and tongue movement. Different methods of extract physiological components were studied and achieved good performance. Then, three combined methods of SOBI and FastICA for extraction of EEG features of motor imagery were proposed. The results showed that combining of SOBI and ICA could not only reduce various artifacts and noise but also localize useful source and improve accuracy of BCI. It would improve further study of physiological mechanisms of motor imagery.

    Release date: Export PDF Favorites Scan
  • A Feature Extraction Method for Brain Computer Interface Based on Multivariate Empirical Mode Decomposition

    This paper presents a feature extraction method based on multivariate empirical mode decomposition (MEMD) combining with the power spectrum feature, and the method aims at the non-stationary electroencephalogram (EEG) or magnetoencephalogram (MEG) signal in brain-computer interface (BCI) system. Firstly, we utilized MEMD algorithm to decompose multichannel brain signals into a series of multiple intrinsic mode function (IMF), which was proximate stationary and with multi-scale. Then we extracted and reduced the power characteristic from each IMF to a lower dimensions using principal component analysis (PCA). Finally, we classified the motor imagery tasks by linear discriminant analysis classifier. The experimental verification showed that the correct recognition rates of the two-class and four-class tasks of the BCI competitionⅢand competitionⅣreached 92.0% and 46.2%, respectively, which were superior to the winner of the BCI competition. The experimental proved that the proposed method was reasonably effective and stable and it would provide a new way for feature extraction.

    Release date: Export PDF Favorites Scan
  • Study on Steady State Visual Evoked Potential Target Detection Based on Two-dimensional Ensemble Empirical Mode Decomposition

    Brain computer interface is a control system between brain and outside devices by transforming electroencephalogram (EEG) signal. The brain computer interface system does not depend on the normal output pathways, such as peripheral nerve and muscle tissue, so it can provide a new way of the communication control for paralysis or nerve muscle damaged disabled persons. Steady state visual evoked potential (SSVEP) is one of non-invasive EEG signals, and it has been widely used in research in recent years. SSVEP is a kind of rhythmic brain activity simulated by continuous visual stimuli. SSVEP frequency is composed of a fixed visual stimulation frequency and its harmonic frequencies. The two-dimensional ensemble empirical mode decomposition (2D-EEMD) is an improved algorithm of the classical empirical mode decomposition (EMD) algorithm which extended the decomposition to two-dimensional direction. 2D-EEMD has been widely used in ocean hurricane, nuclear magnetic resonance imaging (MRI), Lena image and other related image processing fields. The present study shown in this paper initiatively applies 2D-EEMD to SSVEP. The decomposition, the 2-D picture of intrinsic mode function (IMF), can show the SSVEP frequency clearly. The SSVEP IMFs which had filtered noise and artifacts were mapped into the head picture to reflect the time changing trend of brain responding visual stimuli, and to reflect responding intension based on different brain regions. The results showed that the occipital region had the strongest response. Finally, this study used short-time Fourier transform (STFT) to detect SSVEP frequency of the 2D-EEMD reconstructed signal, and the accuracy rate increased by 16%.

    Release date: Export PDF Favorites Scan
  • Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis

    In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCI) systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset Ⅳa from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.

    Release date: Export PDF Favorites Scan
  • Study on Electroencephalogram Recognition Framework by Common Spatial Pattern and Fuzzy Fusion

    Common spatial pattern (CSP) is a very popular method for spatial filtering to extract the features from electroencephalogram (EEG) signals, but it may cause serious over-fitting issue. In this paper, after the extraction and recognition of feature, we present a new way in which the recognition results are fused to overcome the over-fitting and improve recognition accuracy. And then a new framework for EEG recognition is proposed by using CSP to extract features from EEG signals, using linear discriminant analysis (LDA) classifiers to identify the user's mental state from such features, and using Choquet fuzzy integral to fuse classifiers results. Brain-computer interface (BCI) competition 2005 data setsⅣa was used to validate the framework. The results demonstrated that it effectively improved recognition and to some extent overcome the over-fitting problem of CSP. It showed the effectiveness of this framework for dealing with EEG.

    Release date: Export PDF Favorites Scan
  • Classifying Electroencephalogram Signal Using Under-determined Blind Source Separation and Common Spatial Pattern

    One of the key problems of brain-computer interfaces (BCI) is low signal-to-noise ratio (SNR) of electroencephalogram (EEG) signals. It affects recognition performance. To remove the artifact and noise, block under-determined blind source separation method based on the small number of channels is proposed in this paper. The non-stationary EEG signals are turned into block stationary signals by piecewise. The mixing matrix is estimated by the second-order under-determined blind mixing matrix identification. Then, the beamformer based on minimum mean square error separates the original sources of signals. Eventually, the reconstructed EEG for mixed signals removes the unwanted components of source signals to achieve suppressing artifact. The experiment results on the real motor imagery BCI indicated that the block under-determined blind source separation method could reconstruct signals and remove artifact effectively. The accuracy of motor imagery task of BCI has been greatly improved.

    Release date: Export PDF Favorites Scan
  • Applications, industrial transformation and commercial value of brain-computer interface technology

    Brain-computer interface (BCI) is a revolutionary human-computer interaction technology, which includes both BCI that can output instructions directly from the brain to external devices or machines without relying on the peripheral nerve and muscle system, and BCI that bypasses the peripheral nerve and muscle system and inputs electrical, magnetic, acoustic and optical stimuli or neural feedback directly to the brain from external devices or machines. With the development of BCI technology, it has potential application not only in medical field, but also in non-medical fields, such as education, military, finance, entertainment, smart home and so on. At present, there is little literature on the relevant application of BCI technology, the current situation of BCI industrialization at home and abroad and its commercial value. Therefore, this paper expounds and discusses the above contents, which are expected to provide valuable information for the public and organizations, BCI researchers, BCI industry translators and salespeople, and improve the cognitive level of BCI technology, further promote the application and industrial transformation of BCI technology and enhance the commercial value of BCI, so as to serve mankind better.

    Release date: Export PDF Favorites Scan
  • Automatic removal algorithm of electrooculographic artifacts in non-invasive brain-computer interface based on independent component analysis

    The non-invasive brain-computer interface (BCI) has gradually become a hot spot of current research, and it has been applied in many fields such as mental disorder detection and physiological monitoring. However, the electroencephalography (EEG) signals required by the non-invasive BCI can be easily contaminated by electrooculographic (EOG) artifacts, which seriously affects the analysis of EEG signals. Therefore, this paper proposed an improved independent component analysis method combined with a frequency filter, which automatically recognizes artifact components based on the correlation coefficient and kurtosis dual threshold. In this method, the frequency difference between EOG and EEG was used to remove the EOG information in the artifact component through frequency filter, so as to retain more EEG information. The experimental results on the public datasets and our laboratory data showed that the method in this paper could effectively improve the effect of EOG artifact removal and improve the loss of EEG information, which is helpful for the promotion of non-invasive BCI.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content