west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "brain network" 17 results
  • Topology properties of spatial navigation-related functional brain networks in crowds: a study based on graph theory analysis

    Objective To investigate the differences in the topology of functional brain networks between populations with good spatial navigation ability and those with poor spatial navigation ability. Methods From September 2020 to September 2021, 100 college students from PLA Army Border and Coastal Defense Academy were selected to test the spatial navigation ability. The 25 students with the highest spatial navigation ability were selected as the GN group, and the 25 with the lowest spatial navigation ability were selected as the PN group, and their resting-state functional MRI and 3D T1-weighted structural image data of the brain were collected. Graph theory analysis was applied to study the topology of the brain network, including global and local topological properties. Results The variations in the clustering coefficient, characteristic path length, and local efficiency between the GN and PN groups were not statistically significant within the threshold range (P>0.05). The brain functional connectivity networks of the GN and PN groups met the standardized clustering coefficient (γ)>1, the standardized characteristic path length (λ)≈1, and the small-world property (σ)>1, being consistent with small-world network property. The areas under curve (AUCs) for global efficiency (0.22±0.01 vs. 0.21±0.01), γ value (0.97±0.18 vs. 0.81±0.18) and σ value (0.75±0.13 vs. 0.64±0.13) of the GN group were higher than those of the PN group, and the differences were statistically significant (P<0.05); the between-group difference in AUC for λ value was not statistically significant (P>0.05). The results of the nodal level analysis showed that the AUCs for nodal clustering coefficients in the left superior frontal gyrus of orbital region (0.29±0.05 vs. 0.23±0.07), the right rectus gyrus (0.29±0.05 vs. 0.23±0.09), the middle left cingulate gyrus and its lateral surround (0.22±0.02 vs. 0.25±0.02), the left inferior occipital gyrus (0.32±0.05 vs. 0.35±0.05), the right cerebellar area 3 (0.24±0.04 vs. 0.26±0.03), and the right cerebellar area 9 (0.22±0.09 vs. 0.13±0.13) were statistically different between the two groups (P<0.05). The differences in AUCs for degree centrality and nodal efficiency between the two groups were not statistically significant (P>0.05). Conclusions Compared with people with good spatial navigation ability, the topological properties of the brains of the ones with poor spatial navigation ability still conformed to the small-world network properties, but the connectivity between brain regions reduces compared with the good spatial navigation ability group, with a tendency to convert to random networks and a reduced or increased nodal clustering coefficient in some brain regions. Differences in functional brain network connectivity exist among people with different spatial navigation abilities.

    Release date: Export PDF Favorites Scan
  • Efficient connectivity analysis of electroencephalogram in the pre-shot phase of rifle shooting based on causality method

    The directed functional connectivity in cerebral cortical is the key to understanding the pattern of the behavioral tissue. This process was studied to explore the directed functional network of rifle shooters at cerebral cortical rhythms from electroencephalogram (EEG) data, aiming to provide neurosciences basis for the future development of accelerating rifle skill learning method. The generalized orthogonalized partial directed coherence (gOPDC) algorithm was used to calculate the effective directed functional connectivity of the experts and novices in the pre-shot period. The results showed that the frontal, frontal-central, central, parietal and occipital regions were activated. Moreover, the more directed functional connections numbers in right hemispheres were observed compared to the left hemispheres. Furthermore, as compared to experts, novices had more activated regions, the stronger strength of connections and the lower value of the global efficiency during the pre-shot period. Those indirectly supported the conclusion that the novices needed to recruit more brain resources to accomplish tasks, which was consistent with " neural efficiency” hypothesis of the functional cerebral cortical in experts.

    Release date:2018-08-23 05:06 Export PDF Favorites Scan
  • Research development of real-time functional magnetic resonance imaging neuro-feedback technology based on brain network connectivity

    The emergence of real-time functional magnetic resonance imaging (rt-fMRI) has provided foundations for neurofeedback based on brain hemodynamics and has given the new opportunity and challenge to cognitive neuroscience research. Along with the study of advanced brain neural mechanisms, the regulation goal of rt-fMRI neurofeedback develops from the early specific brain region activity to the brain network connectivity more accordant with the brain functional activities, and the study of the latter may be a trend in the area. Firstly, this paper introduces basic principle and development of rt-fMRI neurofeedback. Then, it specifically discusses the current research status of brain connectivity neurofeedback technology, including research approaches, experimental methods, conclusions, and so on. Finally, it discusses the problems in this field in the future development.

    Release date:2017-06-19 03:24 Export PDF Favorites Scan
  • Degree centrality of the functional network in schizophrenia patients

    The aim of the present study was to investigate the alternations of brain functional networks at resting state in the schizophrenia (SCH) patients using voxel-wise degree centrality (DC) method. The resting-state functional magnetic resonance imaging (rfMRI) data were collected from 41 SCH patients and 41 matched healthy control subjects and then analyzed by voxel-wise DC method. The DC maps between the patient group and the control group were compared using by two sample t test. The correlation analysis was also performed between DC values and clinical symptom and illness duration in SCH group. Results showed that compared with the control group, SCH patients exhibited significantly decreased DC value in primary sensorimotor network, and increased DC value in executive control network. In addition, DC value of the regions with obvious differences between the two groups significantly correlated to Positive and Negative Syndrome Scale (PANSS) scores and illness duration of SCH patients. The study showed the abnormal functional integration in primary sensorimotor network and executive control network in SCH patients.

    Release date:2017-12-21 05:21 Export PDF Favorites Scan
  • Dynamic analysis of epileptic causal brain networks based on directional transfer function

    Epilepsy is a neurological disease with disordered brain network connectivity. It is important to analyze the brain network mechanism of epileptic seizure from the perspective of directed functional connectivity. In this paper, causal brain networks were constructed for different sub-bands of epileptic electroencephalogram (EEG) signals in interictal, preictal and ictal phases by directional transfer function method, and the information transmission pathway and dynamic change process of brain network under different conditions were analyzed. Finally, the dynamic changes of characteristic attributes of brain networks with different rhythms were analyzed. The results show that the topology of brain network changes from stochastic network to rule network during the three stage and the node connections of the whole brain network show a trend of gradual decline. The number of pathway connections between internal nodes of frontal, temporal and occipital regions increase. There are a lot of hub nodes with information outflow in the lesion region. The global efficiency in ictal stage of α, β and γ waves are significantly higher than in the interictal and the preictal stage. The clustering coefficients in preictal stage are higher than in the ictal stage and the clustering coefficients in ictal stage are higher than in the interictal stage. The clustering coefficients of frontal, temporal and parietal lobes are significantly increased. The results of this study indicate that the topological structure and characteristic properties of epileptic causal brain network can reflect the dynamic process of epileptic seizures. In the future, this study has important research value in the localization of epileptic focus and prediction of epileptic seizure.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • Classification of emotional brain networks based on weighted K-order propagation number

    Electroencephalography (EEG) signals are strongly correlated with human emotions. The importance of nodes in the emotional brain network provides an effective means to analyze the emotional brain mechanism. In this paper, a new ranking method of node importance, weighted K-order propagation number method, was used to design and implement a classification algorithm for emotional brain networks. Firstly, based on DEAP emotional EEG data, a cross-sample entropy brain network was constructed, and the importance of nodes in positive and negative emotional brain networks was sorted to obtain the feature matrix under multi-threshold scales. Secondly, feature extraction and support vector machine (SVM) were used to classify emotion. The classification accuracy was 83.6%. The results show that it is effective to use the weighted K-order propagation number method to extract the importance characteristics of brain network nodes for emotion classification, which provides a new means for feature extraction and analysis of complex networks.

    Release date:2020-08-21 07:07 Export PDF Favorites Scan
  • Research on effects of low-frequency repetitive transcranial magnetic stimulation over primary motor cortex on functional connectivity of brain

    Repetitive transcranial magnetic stimulation (rTMS) can influence the stimulated brain regions and other distal brain regions connecting to them. The purpose of the study is to investigate the effects of low-frequency rTMS over primary motor cortex on brain by analyzing the brain functional connectivity and coordination between brain regions. 10 healthy subjects were recruited. 1 Hz rTMS was used to stimulate primary motor cortex for 20 min. 1 min resting state electroencephalography (EEG) was collected before and after the stimulation respectively. By performing phase synchronization analysis between the EEG electrodes, the brain functional network and its properties were calculated. Signed-rank test was used for statistical analysis. The result demonstrated that the global phase synchronization in alpha frequency band was decreased significantly after low-frequency rTMS (P<0.05). The phase synchronization was down-regulated between motor cortex and ipsilateral frontal/parietal cortex, and also between contralateral parietal cortex and bilateral frontal cortex. The mean degree and global efficiency of brain functional networks in alpha frequency band were significantly decreased (P<0.05), and the mean shortest path length were significantly increased (P<0.05), which suggested the information transmission of the brain networks and its efficiency was reduced after low-frequency rTMS. This study verified the inhibition function of the low-frequency rTMS to brain activities, and demonstrated that low-frequency rTMS stimulation could affect both stimulating brain regions and distal brain regions connected to them. The findings in this study could be of guidance to clinical application of low-frequency rTMS.

    Release date:2017-08-21 04:00 Export PDF Favorites Scan
  • Research on electroencephalogram specifics in patients with schizophrenia under cognitive load

    Cognitive impairment is one of the three primary symptoms of schizophrenic patients and shows important value in early detection and warning for high-risk individuals. To study the specifics of electroencephalogram (EEG) in patients with schizophrenia under the cognitive load, we collected EEG signals from 17 schizophrenic patients and 19 healthy controls, extracted signals of each band based on wavelet transform, calculated the characteristics of nonlinear dynamic and functional brain networks, and automatically classified the two groups of people by using a machine learning algorithm. Experimental results indicated that the correlation dimension and sample entropy showed significant differences in α, β, θ, and γ rhythm of the Fp1 and Fp2 electrodes between groups under the cognitive load. These results implied that the functional disruptions in the frontal lobe might be the important factors of cognitive impairments in schizophrenic patients. Further results of the automatic classification analysis indicated that the combination of nonlinear dynamics and functional brain network properties as the input characteristics of the classifier showed the best performance, with the accuracy of 76.77%, sensitivity of 72.09%, and specificity of 80.36%. The results of this study demonstrated that the combination of nonlinear dynamics and function brain network properties may be potential biomarkers for early screening and auxiliary diagnosis of schizophrenia.

    Release date:2020-04-18 10:01 Export PDF Favorites Scan
  • Research on the Effects of 20 Hz Frequency Somatosensory Vibration Stimulation on Electroencephalogram Features

    Somatosensory vibration can stimulate somatosensory area of human body, and this stimulation is tranferred to somatosensory nerves, and influences the somatic cortex, which is on post-central gyrus and paracentral lobule posterior of cerebral cortex, so that it alters the functional status of brain. The aim of the present study was to investigate the neural mechanism of brain state induced by somatosensory vibration. Twelve subjects were involved in the 20 Hz vibration stimulation test. Linear and nonlinear methods, such as relative change of relative power (RRP), Lempel-Ziv complexity (LZC) and brain network based on cross mutual information (CMI), were applied to discuss the change of brain under somatosensory vibration stimulation. The experimental results showed the frequency following response (FFR) by RRP of spontaneous electroencephalogram (EEG) in 20 Hz vibration, and no obvious change by LZC. The information transmission among various cortical areas enhanced under 20 Hz vibration stimulation. Therefore, 20 Hz somatosensory vibration may be able to adjust the functional status of brain.

    Release date:2016-12-19 11:20 Export PDF Favorites Scan
  • Review on the relationship between selective attention and neural oscillations

    Selective attention promotes the perception of brain to outside world and coordinates the allocation of limited brain resources. It is a cognitive process which relies on the neural activities of attention-related brain network. As one of the important forms of brain activities, neural oscillations are closely related to selective attention. In recent years, the relationship between selective attention and neural oscillations has become a hot issue. The new method that using external rhythmic stimuli to influence neural oscillations, i.e., neural entrainment, provides a promising approach to investigate the relationship between selective attention and neural oscillations. Moreover, it provides a new method to diagnose and even to treat the attention dysfunction. This paper reviewed the research status on the relationship between selective attention and neural oscillations, and focused on the application prospects of neural entrainment in revealing this relationship and diagnosing, even treating the attention dysfunction.

    Release date:2019-04-15 05:31 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content