west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "brain-computer interface" 36 results
  • Research progress about brain-computer interface technology based on cognitive brain areas and its applications in rehabilitation

    Brain–computer interface (BCI) technology enable humans to interact with external devices by decoding their brain signals. Despite it has made some significant breakthroughs in recent years, there are still many obstacles in its applications and extensions. The current used BCI control signals are generally derived from the brain areas involved in primary sensory- or motor-related processing. However, these signals only reflect a limited range of limb movement intention. Therefore, additional sources of brain signals for controlling BCI systems need to be explored. Brain signals derived from the cognitive brain areas are more intuitive and effective. These signals can be used for expand the brain signal sources as a new approach. This paper reviewed the research status of cognitive BCI based on the single brain area and multiple hybrid brain areas, and summarized its applications in the rehabilitation medicine. It’s believed that cognitive BCI technologies would become a possible breakthrough for future BCI rehabilitation applications.

    Release date:2018-10-19 03:21 Export PDF Favorites Scan
  • A research for single trial detection of error related negativity

    Error related negativity (ERN) is generated in frontal and central cortical regions when individuals perceive errors. Because ERN has low signal-to-noise ratio and large individual difference, it is difficult for single trial ERN recognition. In current study, the optimized electroencephalograph (EEG) channels were selected based on the brain topography of ERN activity and ERN offline recognition rate, and the optimized EEG time segments were selected based on the ERN offline recognition rate, then the low frequency time domain and high frequency time-frequency domain features were analyzed based on wavelet transform, after which the ERN single detection algorithm was proposed based on the above procedures. Finally, we achieved average recognition rate of 72.0% ± 9.6% in 10 subjects by using the sample points feature in 0~3.9 Hz and the power and variance features in 3.9~15.6 Hz from the EEG segments of 200~600 ms on the selected 6 channels. Our work has the potential to help the error command real-time correction technique in the application of online brain-computer interface system.

    Release date:2018-08-23 05:06 Export PDF Favorites Scan
  • Indoor simulation training system for brain-controlled wheelchair based on steady-state visual evoked potentials

    Brain-controlled wheelchair (BCW) is one of the important applications of brain-computer interface (BCI) technology. The present research shows that simulation control training is of great significance for the application of BCW. In order to improve the BCW control ability of users and promote the application of BCW under the condition of safety, this paper builds an indoor simulation training system based on the steady-state visual evoked potentials for BCW. The system includes visual stimulus paradigm design and implementation, electroencephalogram acquisition and processing, indoor simulation environment modeling, path planning, and simulation wheelchair control, etc. To test the performance of the system, a training experiment involving three kinds of indoor path-control tasks is designed and 10 subjects were recruited for the 5-day training experiment. By comparing the results before and after the training experiment, it was found that the average number of commands in Task 1, Task 2, and Task 3 decreased by 29.5%, 21.4%, and 25.4%, respectively (P < 0.001). And the average number of commands used by the subjects to complete all tasks decreased by 25.4% (P < 0.001). The experimental results show that the training of subjects through the indoor simulation training system built in this paper can improve their proficiency and efficiency of BCW control to a certain extent, which verifies the practicability of the system and provides an effective assistant method to promote the indoor application of BCW.

    Release date:2020-08-21 07:07 Export PDF Favorites Scan
  • Brain-computer interface: from lab to real scene

    Brain-computer interface (BCI) can be summarized as a system that uses online brain information to realize communication between brain and computer. BCI has experienced nearly half a century of development, although it now has a high degree of awareness in the public, but the application of BCI in the actual scene is still very limited. This collection invited some BCI teams in China to report their efforts to promote BCI from laboratory to real scene. This paper summarizes the main contents of the invited papers, and looks forward to the future of BCI.

    Release date:2021-08-16 04:59 Export PDF Favorites Scan
  • Channel Selection for Multi-class Motor Imagery Based on Common Spatial Pattern

    High-density channels are often used to acquire electroencephalogram (EEG) spatial information in different cortical regions of the brain in brain-computer interface (BCI) systems. However, applying excessive channels is inconvenient for signal acquisition, and it may bring artifacts. To avoid these defects, the common spatial pattern (CSP) algorithm was used for channel selection and a selection criteria based on norm-2 is proposed in this paper. The channels with the highest M scores were selected for the purpose of using fewer channels to acquire similar rate with high density channels. The DatasetⅢa from BCI competition 2005 were used for comparing the classification accuracies of three motor imagery between whole channels and the selected channels with the present proposed method. The experimental results showed that the classification accuracies of three subjects using the 20 channels selected with the present method were all higher than the classification accuracies using all 60 channels, which convinced that our method could be more effective and useful.

    Release date: Export PDF Favorites Scan
  • Cross-subject electroencephalogram emotion recognition based on maximum classifier discrepancy

    Affective brain-computer interfaces (aBCIs) has important application value in the field of human-computer interaction. Electroencephalogram (EEG) has been widely concerned in the field of emotion recognition due to its advantages in time resolution, reliability and accuracy. However, the non-stationary characteristics and individual differences of EEG limit the generalization of emotion recognition model in different time and different subjects. In this paper, in order to realize the recognition of emotional states across different subjects and sessions, we proposed a new domain adaptation method, the maximum classifier difference for domain adversarial neural networks (MCD_DA). By establishing a neural network emotion recognition model, the shallow feature extractor was used to resist the domain classifier and the emotion classifier, respectively, so that the feature extractor could produce domain invariant expression, and train the decision boundary of classifier learning task specificity while realizing approximate joint distribution adaptation. The experimental results showed that the average classification accuracy of this method was 88.33% compared with 58.23% of the traditional general classifier. It improves the generalization ability of emotion brain-computer interface in practical application, and provides a new method for aBCIs to be used in practice.

    Release date:2021-08-16 04:59 Export PDF Favorites Scan
  • A review of researches on electroencephalogram decoding algorithms in brain-computer interface

    Brain-computer interface (BCI) provides a direct communicating and controlling approach between the brain and surrounding environment, which attracts a wide range of interest in the fields of brain science and artificial intelligence. It is a core to decode the electroencephalogram (EEG) feature in the BCI system. The decoding efficiency highly depends on the feature extraction and feature classification algorithms. In this paper, we first introduce the commonly-used EEG features in the BCI system. Then we introduce the basic classical algorithms and their advanced versions used in the BCI system. Finally, we present some new BCI algorithms proposed in recent years. We hope this paper can spark fresh thinking for the research and development of high-performance BCI system.

    Release date:2019-12-17 10:44 Export PDF Favorites Scan
  • A TrAdaBoost-based method for detecting multiple subjects’ P300 potentials

    Individual differences of P300 potentials lead to that a large amount of training data must be collected to construct pattern recognition models in P300-based brain-computer interface system, which may cause subjects’ fatigue and degrade the system performance. TrAdaBoost is a method that transfers the knowledge from source area to target area, which improves learning effect in the target area. Our research purposed a TrAdaBoost-based linear discriminant analysis and a TrAdaBoost-based support vector machine to recognize the P300 potentials across multiple subjects. This method first trains two kinds of classifiers separately by using the data deriving from a small amount of data from same subject and a large amount of data from different subjects. Then it combines all the classifiers with different weights. Compared with traditional training methods that use only a small amount of data from same subject or mixed different subjects’ data to directly train, our algorithm improved the accuracies by 19.56% and 22.25% respectively, and improved the information transfer rate of 14.69 bits/min and 15.76 bits/min respectively. The results indicate that the TrAdaBoost-based method has the potential to enhance the generalization ability of brain-computer interface on the individual differences.

    Release date:2019-08-12 02:37 Export PDF Favorites Scan
  • The supernumerary robotic limbs of brain-computer interface based on asynchronous steady-state visual evoked potential

    Brain-computer interface (BCI) based on steady-state visual evoked potential (SSVEP) have attracted much attention in the field of intelligent robotics. Traditional SSVEP-based BCI systems mostly use synchronized triggers without identifying whether the user is in the control or non-control state, resulting in a system that lacks autonomous control capability. Therefore, this paper proposed a SSVEP asynchronous state recognition method, which constructs an asynchronous state recognition model by fusing multiple time-frequency domain features of electroencephalographic (EEG) signals and combining with a linear discriminant analysis (LDA) to improve the accuracy of SSVEP asynchronous state recognition. Furthermore, addressing the control needs of disabled individuals in multitasking scenarios, a brain-machine fusion system based on SSVEP-BCI asynchronous cooperative control was developed. This system enabled the collaborative control of wearable manipulator and robotic arm, where the robotic arm acts as a “third hand”, offering significant advantages in complex environments. The experimental results showed that using the SSVEP asynchronous control algorithm and brain-computer fusion system proposed in this paper could assist users to complete multitasking cooperative operations. The average accuracy of user intent recognition in online control experiments was 93.0%, which provides a theoretical and practical basis for the practical application of the asynchronous SSVEP-BCI system.

    Release date:2024-10-22 02:33 Export PDF Favorites Scan
  • Research on performance of motor-imagery-based brain-computer interface in different complexity of Chinese character patterns

    The traditional paradigm of motor-imagery-based brain-computer interface (BCI) is abstract, which cannot effectively guide users to modulate brain activity, thus limiting the activation degree of the sensorimotor cortex. It was found that the motor imagery task of Chinese characters writing was better accepted by users and helped guide them to modulate their sensorimotor rhythms. However, different Chinese characters have different writing complexity (number of strokes), and the effect of motor imagery tasks of Chinese characters with different writing complexity on the performance of motor-imagery-based BCI is still unclear. In this paper, a total of 12 healthy subjects were recruited for studying the effects of motor imagery tasks of Chinese characters with two different writing complexity (5 and 10 strokes) on the performance of motor-imagery-based BCI. The experimental results showed that, compared with Chinese characters with 5 strokes, motor imagery task of Chinese characters writing with 10 strokes obtained stronger sensorimotor rhythm and better recognition performance (P < 0.05). This study indicated that, appropriately increasing the complexity of the motor imagery task of Chinese characters writing can obtain stronger motor imagery potential and improve the recognition accuracy of motor-imagery-based BCI, which provides a reference for the design of the motor-imagery-based BCI paradigm in the future.

    Release date:2021-08-16 04:59 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content