ObjectiveTo evaluate the safety of photoelectric guided navigation unilateral puncture of the percutaneous kyphoplasty (PKP) in the treatment of thoracolumbar osteoporotic vertebral compression fracture (OVCF).MethodsA randomized controlled clinical research was performed between June 2015 and January 2017. Eighty-five cases of OVCF were treated with photoelectric guided navigation unilateral puncture of the PKP (trial group, 43 cases) or C arm fluoroscopy unilateral puncture of the PKP (control group, 42 cases) respectively. There was no significant difference in gender, age, disease duration, segmental fracture, AO classification, bone mineral density, and preoperative visual analogue scale (VAS) score between 2 groups (P>0.05). The concordance rate of puncture path and design path, the incidence of pedicle wall breaking, the incidence of bone cement leakage, and the rate of bone cement distribution center were observed and calculated on postoperative CT images; the intraoperative X-ray exposure frequency, frequency of puncture, operation time, VAS scores before operation and at 2 days after operation, and postoperative blood vessel or nerve injury were recorded and compared.ResultsThe intraoperative X-ray exposure frequency and puncture frequency in trial group were significantly less than those in control group (P<0.05), but there was no significant difference in operation time between 2 groups (t=0.440, P=0.661). The VAS scores of 2 groups at 2 days after operation were significantly improved when compared with preoperative ones (P<0.05), but there was no significant difference in VAS score at 2 days after operation between 2 groups (t=0.406, P=0.685). All the patients were followed up 6-18 months (mean, 10 months). No blood vessel or nerve injury occurred in 2 groups. The incidence of pedicle wall breaking, the incidence of bone cement leakage, the concordance rate of puncture path and design path, and the rate of bone cement distribution center in trial group were 2.33% (1/43), 2.33% (1/43), 86.05% (37/43), and 88.37% (38/43) respectively, all showing significant differences when compared with those of control group [19.05% (8/42), 21.43% (9/42), 45.24% (19/42), and 50.00% (21/42) respectively] (P<0.05).ConclusionIntraoperative photoelectric guided navigation unilateral puncture of the PKP can improve the success rate of target puncture and reduce the incidence of pedicle wall breaking effectively, and achieve better bone cement distribution and better security.
Objective To investigate the effects of different puncture levels on bone cement distribution and effectiveness in bilateral percutaneous vertebroplasty for osteoporotic thoracolumbar compression fractures. Methods A clinical data of 274 patients with osteoporotic thoracolumbar compression fractures who met the selection criteria between December 2017 and December 2020 was retrospectively analyzed. All patients underwent bilateral percutaneous vertebroplasty. During operation, the final position of the puncture needle tip reached was observed by C-arm X-ray machine. And 118 cases of bilateral puncture needle tips were at the same level (group A); 156 cases of bilateral puncture needle tips were at different levels (group B), of which 87 cases were at the upper 1/3 layer and the lower 1/3 layer respectively (group B1), and 69 cases were at the adjacent levels (group B2). There was no significant difference in gender, age, fracture segment, degree of osteoporosis, disease duration, and preoperative visual analogue scale (VAS) score, and Oswestry disability index (ODI) between groups A and B and among groups A, B1, and B2 (P>0.05). The operation time, bone cement injection volume, postoperative VAS score, ODI, and bone cement distribution were compared among the groups. Results All operations were successfully completed without pulmonary embolism, needle tract infection, or nerve compression caused by bone cement leakage. There was no significant difference in operation time and bone cement injection volume between groups A and B or among groups A, B1, and B2 (P>0.05). All patients were followed up 3-32 months, with an average of 7.8 months. There was no significant difference in follow-up time between groups A and B and among groups A, B1, and B2 (P>0.05). At 3 days after operation and last follow-up, VAS score and ODI were significantly lower in group B than in group A (P<0.05), in groups B1 and B2 than in group A (P<0.05), and in group B1 than in group B2 (P<0.05). Imaging review showed that the distribution of bone cement in the coronal midline of injured vertebrae was significantly better in group B than in group A (P<0.05), in groups B1 and B2 than in group A (P<0.05), and in group B1 than in group B2 (P<0.05). In group A, 7 cases had postoperative vertebral collapse and 8 cases had other vertebral fractures. In group B, only 1 case had postoperative vertebral collapse during follow-up. ConclusionBilateral percutaneous vertebroplasty in the treatment of osteoporotic thoracolumbar compression fractures can obtain good bone cement distribution and effectiveness when the puncture needle tips locate at different levels during operation. When the puncture needle tips locate at the upper 1/3 layer and the lower 1/3 layer of the vertebral body, respectively, the puncture sites are closer to the upper and lower endplates, and the injected bone cement is easier to connect with the upper and lower endplates.