west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "chemotaxis" 3 results
  • Effect of the Combination of Xiyanping and Cefazolin on the Function of Neutrophils in Mice

    Xiyanping is used to treat infectious diseases with antibiotics in clinic. The aim of this study is to investigate the mechanism of Xiyanping through studying the effect of the combination of Xiyanping with Cefazolin on the chemotaxis and phagocytic function of peripheral blood neutrophils in mice. Ten healthy mice were in control group. Forty healthy mice in experimental group were infected with staphylococcus aureus, and were randomly divided further into four groups, i.e. model group, Xiyanping group, Cefazolin group and combination group (Xiyanping with Cefazolin). Mice in the control group and model group were given normal saline (NS) through abdomen while those in other groups were given Xiyanping, Cefazolin, and Xiyanping with Cefazolin, respectively. The chemotaxis of peripheral blood neutrophils was detected with the transwell method, and the phagocytic function of peripheral blood neutrophils was analyzed with flow cytometry (FCM). In the present study, there was no significance on the chemotactic index of peripheral blood neutrophils in all the groups (P>0.05). The actual phagocytotic rate and index of peripheral blood neutrophils in the blank group, Xiyanping group, and the combination group were significantly higher than those of the model group and Cefazolin group (P<0.05). However, those were not significant in the blank group, Xiyanping group, and the combination group (P>0.05) or between the model group and Cefazolin group (P>0.05). Our results suggested the combination of Xiyanping and Cefazolin could enhance the therapeutic effect by improving the phagocytic function of peripheral blood neutrophils.

    Release date: Export PDF Favorites Scan
  • In vitro study on promoting migration ability of rat adipose derived stem cells modified by stromal cell-derived factor 1α

    ObjectiveTo explored the effect of stromal cell-derived factor 1α (SDF-1α) on promoting the migration ability of rat adipose derived stem cells (rADSCs) by constructed the rADSCs overexpression SDF-1α via adenovirus transfection.MethodsrADSCs were isolated from adipose tissue of 6-week-old SPF Sprague Dawley rats. Morphological observation, multi-directional differentiations (osteogenic, adipogenic, and chondrogenic inductions), and flow cytometry identification were performed. Transwell cell migration experiment was used to observe and screen the optimal concentration of exogenous SDF-1α to optimize the migration ability of rADSCs; the optimal multiplicity of infection (MOI) of rADSCs was screened by observing the cell status and fluorescence expression after transfection. Then the third generation of rADSCs were divided into 4 groups: group A was pure rADSCs; group B was rADSCs co-cultured with SDF-1α at the best concentration; group C was rADSCs infected with recombinant adenovirus-mediated green fluorescent protein (Adv-GFP) with the best MOI; group D was rADSCs infected with Adv-GFP-SDF-1α overexpression adenovirus with the best MOI. Cell counting kit 8 (CCK-8) and Transwell cell migration experiment were preformed to detect and compare the effect of exogenous SDF-1α and SDF-1α overexpression on the proliferation and migration ability of rADSCs.ResultsThe cell morphology, multi-directional differentiations, and flow cytometry identification showed that the cultured cells were rADSCs. After screening, the optimal stimulating concentration of exogenous SDF-1α was 12.5 nmol/L; the optimal MOI of Adv-GFP adenovirus was 200; the optimal MOI of Adv-GFP-SDF-1α overexpression adenovirus was 400. CCK-8 method and Transwell cell migration experiment showed that compared with groups A and C, groups B and D could significantly improve the proliferation and migration of rADSCs (P<0.05); the effect of group D on enhancing the migration of rADSCs was weaker than that of group B, but the effect of promoting the proliferation of rADSCs was stronger than that of group D (P<0.05).ConclusionSDF-1α overexpression modification on rADSCs can significantly promote the proliferation and migration ability, which may be a potential method to optimize the application of ADSCs in tissue regeneration and wound repair.

    Release date:2020-11-02 06:24 Export PDF Favorites Scan
  • Inertial label-free sorting and chemotaxis of polymorphonuclear neutrophil in sepsis patients based on microfluidic technology

    Reduced chemotactic migration of polymorphonuclear neutrophil (PMN) in sepsis patients leads to decreased bacterial clearance and accelerates the progression of sepsis disease. Quantification of PMN chemotaxis in sepsis patients can help characterize the immune health of sepsis patients. Microfluidic microarrays have been widely used for cell chemotaxis analysis because of the advantages of low reagent consumption, near-physiological environment, and visualization of the migration process. Currently, the study of PMN chemotaxis using microfluidic chips is mainly limited by the cumbersome cell separation operation and low throughput of microfluidic chips. In this paper, we first designed an inertial cell sorting chip to achieve label-free separation of the two major cell types by using the basic principle that leukocytes (mainly granulocytes, lymphocytes and monocytes) and erythrocytes move to different positions of the spiral microchannel when they move in the spiral microchannel under different strength of inertial force and Dean's resistance. Subsequently, in this paper, we designed a multi-channel cell migration chip and constructed a microfluidic PMN inertial label-free sorting and chemotaxis analysis platform. The inertial cell sorting chip separates leukocyte populations and then injects them into the multi-channel cell migration chip, which can complete the chemotaxis test of PMN to chemotactic peptide (fMLP) within 15 min. The remaining cells, such as monocytes with slow motility and lymphocytes that require pre-activation with proliferative culture, do not undergo significant chemotactic migration. The test results of sepsis patients (n=6) and healthy volunteers (n=3) recruited in this study showed that the chemotaxis index (CI) and migration velocity (v) of PMN from sepsis patients were significantly weaker than those from healthy volunteers. In conclusion, the microfluidic PMN inertial label-free sorting and chemotaxis analysis platform constructed in this paper can be used as a new tool for cell label-free sorting and migration studies.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content