The motor nervous system transmits motion control information through nervous oscillations, which causes the synchronous oscillatory activity of the corresponding muscle to reflect the motion response information and give the cerebral cortex feedback, so that it can sense the state of the limbs. This synchronous oscillatory activity can reflect connectivity information of electroencephalography-electromyography (EEG-EMG) functional coupling. The strength of the coupling is determined by various factors including the strength of muscle contraction, attention, motion intention etc. It is very significant to study motor functional evaluation and control methods to analyze the changes of EEG-EMG synchronous coupling caused by different factors. This article mainly introduces and compares coherence and Granger causality of linear methods, the mutual information and transfer entropy of nonlinear methods in EEG-EMG synchronous coupling, and summarizes the application of each method, so that researchers in related fields can understand the current research progress on analysis methods of EEG-EMG synchronous systematically.
Human motion control system has a high degree of nonlinear characteristics. Through quantitative evaluation of the nonlinear coupling strength between surface electromyogram (sEMG) signals, we can get the functional state of the muscles related to the movement, and then explore the mechanism of human motion control. In this paper, wavelet packet decomposition and n:m coherence analysis are combined to construct an intermuscular cross-frequency coupling analysis model based on wavelet packet-n:m coherence. In the elbow flexion and extension state with 30% maximum voluntary contraction force (MVC), sEMG signals of 20 healthy adults were collected. Firstly, the subband components were obtained based on wavelet packet decomposition, and then the n:m coherence of subband signals was calculated to analyze the coupling characteristics between muscles. The results show that the linear coupling strength (frequency ratio 1:1) of the cooperative and antagonistic pairs is higher than that of the nonlinear coupling (frequency ratio 1:2, 2:1 and 1:3, 3:1) under the elbow flexion motion of 30% MVC; the coupling strength decreases with the increase of frequency ratio for the intermuscular nonlinear coupling, and there is no significant difference between the frequency ratio n:m and m:n. The intermuscular coupling in beta and gamma bands is mainly reflected in the linear coupling (1:1), nonlinear coupling of low frequency ratio (1:2, 2:1) between synergetic pair and the linear coupling between antagonistic pairs. The results show that the wavelet packet-n:m coherence method can qualitatively describe the nonlinear coupling strength between muscles, which provides a theoretical reference for further revealing the mechanism of human motion control and the rehabilitation evaluation of patients with motor dysfunction.