west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "computer-aided detection" 3 results
  • A Review on the Research Progress of the Computer-Aided Detection of Pulmonary Nodule

    Computer-aided detection (CAD) of pulmonary nodule technology can effectively assist the radiologist to enhance lung nodule detection efficiency and accuracy rate, so it can lay the foundation for the early diagnosis of lung cancer. In order to provide reference for the scholars and to develop the CAD technology, we in this paper review the technology research and development of CAD of the pulmonary nodules which is based on CT image in recent years both home and abroad. At the same time, we also analyse the advantages and shortcomings of different methods. Then we present the improvement direction for reference. According to the literature in recent years, there still has been large development space in CAD technology for pulmonary nodules. The establishment and improvement of the CAD system in each step would be of great scientific value.

    Release date: Export PDF Favorites Scan
  • Medical computer-aided detection method based on deep learning

    This paper performs a comprehensive study on the computer-aided detection for the medical diagnosis with deep learning. Based on the region convolution neural network and the prior knowledge of target, this algorithm uses the region proposal network, the region of interest pooling strategy, introduces the multi-task loss function: classification loss, bounding box localization loss and object rotation loss, and optimizes it by end-to-end. For medical image it locates the target automatically, and provides the localization result for the next stage task of segmentation. For the detection of left ventricular in echocardiography, proposed additional landmarks such as mitral annulus, endocardial pad and apical position, were used to estimate the left ventricular posture effectively. In order to verify the robustness and effectiveness of the algorithm, the experimental data of ultrasonic and nuclear magnetic resonance images are selected. Experimental results show that the algorithm is fast, accurate and effective.

    Release date:2018-08-23 03:47 Export PDF Favorites Scan
  • Pulmonary nodule detection method based on convolutional neural network

    A method was proposed to detect pulmonary nodules in low-dose computed tomography (CT) images by two-dimensional convolutional neural network under the condition of fine image preprocessing. Firstly, CT image preprocessing was carried out by image clipping, normalization and other algorithms. Then the positive samples were expanded to balance the number of positive and negative samples in convolutional neural network. Finally, the model with the best performance was obtained by training two-dimensional convolutional neural network and constantly optimizing network parameters. The model was evaluated in Lung Nodule Analysis 2016(LUNA16) dataset by means of five-fold cross validation, and each group's average model experiment results were obtained with the final accuracy of 92.3%, sensitivity of 92.1% and specificity of 92.6%.Compared with other existing automatic detection and classification methods for pulmonary nodules, all indexes were improved. Subsequently, the model perturbation experiment was carried out on this basis. The experimental results showed that the model is stable and has certain anti-interference ability, which could effectively identify pulmonary nodules and provide auxiliary diagnostic advice for early screening of lung cancer.

    Release date:2020-02-18 09:21 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content