west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "depth of anesthesia" 3 results
  • Monitoring Depth of Anesthesia and Effect Analysis in Primary Visual Cortex of Rats Based on Complexity of Local Field Potential

    In the present study carried out in our laboratory, we recorded local field potential (LFP) signals in primary visual cortex (V1 area) of rats during the anesthesia process in the electrophysiological experiments of invasive microelectrode array implant, and obtained time evolutions of complexity measure Lempel-ziv complexity (LZC) by nonlinear dynamic analysis method. Combined with judgment criterion of tail flick latency to thermal stimulus and heart rate, the visual stimulation experiments are carried out to verify the reliability of anesthetized states by complexity analysis. The experimental results demonstrated that the time varying complexity measures LZC of LFP signals of different channels were similar to each other in the anesthesia process. In the same anesthesia state, the difference of complexity measure LZC between neuronal responses before and after visual stimulation was not significant. However, the complexity LZC in different anesthesia depths had statistical significances. Furthermore, complexity threshold value represented the depth of anesthesia was determined using optimization method. The reliability and accuracy of monitoring the depth of anesthesia using complexity measure LZC of LFP were all high. It provided an effective method of realtime monitoring depth of anesthesia for craniotomy patients in clinical operation.

    Release date: Export PDF Favorites Scan
  • Study on the Evaluation Index of Depth of Anesthesia Awareness Based on Sample Entropy and Decision Tree

    Currently, monitoring system of awareness of the depth of anesthesia has been more and more widely used in clinical practices. The intelligent evaluation algorithm is the key technology of this type of equipment. On the basis of studies about changes of electroencephalography (EEG) features during anesthesia, a discussion about how to select reasonable EEG parameters and classification algorithm to monitor the depth of anesthesia has taken place. A scheme which combines time domain analysis, frequency domain analysis and the variability of EEG and decision tree as classifier and least squares to compute Depth of anesthesia Index (DOAI) is proposed in this paper. Using the EEG of 40 patients who underwent general anesthesia with propofol, and the classification and the score of the EEG annotated by anesthesiologist, we verified this scheme with experiments. Classification and scoring was based on a combination of modified observer assessment of alertness/sedation (MOAA/S), and the changes of EEG parameters of patients during anesthesia. Then we used the BIS index to testify the validation of the DOAI. Results showed that Pearson's correlation coefficient between the DOAI and the BIS over the test set was 0.89. It is demonstrated that the method is feasible and has good accuracy.

    Release date: Export PDF Favorites Scan
  • An anesthesia depth computing method study based on wavelet transform and artificial neural network

    General anesthesia is an essential part of surgery to ensure the safety of patients. Electroencephalogram (EEG) has been widely used in anesthesia depth monitoring for abundant information and the ability of reflecting the brain activity. The paper proposes a method which combines wavelet transform and artificial neural network (ANN) to assess the depth of anesthesia. Discrete wavelet transform was used to decompose the EEG signal, and the approximation coefficients and detail coefficients were used to calculate the 9 characteristic parameters. Kruskal-Wallis statistical test was made to these characteristic parameters, and the test showed that the parameters were statistically significant for the differences of the four levels of anesthesia: awake, light anesthesia, moderate anesthesia and deep anesthesia (P < 0.001). The 9 characteristic parameters were used as the input of ANN, the bispectral index (BIS) was used as the reference output, and the method was evaluated by the data of 8 patients during general anesthesia. The accuracy of the method in the classification of the four anesthesia levels of the test set in the 7:3 set-out method was 85.98%, and the correlation coefficient with the BIS was 0.977 0. The results show that this method can better distinguish four different anesthesia levels and has broad application prospects for monitoring the depth of anesthesia.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content