Objective To explore the effect of “in situ first” ex vivo liver resection and autologous liver transplantation (ELRA) for end stage hepatic alveolar echinococcosis (HAE). Methods The clinicopathologic data of 85 end stage HAE cases were initially scheduled underwent ELRA from June 2019 to May 2022 in the Sichuan Provincial People’s Hospital were collected retrospectively. The included cases were operated under “in situ first” ERLA principle. The analyzed data included the final surgical style, operative time, time of anhepatic phase and intraoperative blood transfusion volume for ELRA cases. Results All the included 85 cases underwent radical HAE lesions resection and without perioperative death occurred. According to the principle of “in situ first”, 57 cases underwent HAE lesions resection combined vascular reconstruction without ex vivo liver resection (in situ resection group); 1 case underwent auxiliary partial autologous liver transplantation, and 27 cases underwent ERLA procedures (ELRA group). In the in situ resection group, the operative time was 210–750 min, (380±134)min, and the intraoperative blood transfusion was 0–3 250 mL with a median of 0 mL. In the ELRA group, the operative time was 450–1 445 min, (852±203) min, and the intraoperative blood transfusion was 0–6 800 mL with a median of 1 960 mL. The operative time and the amount of blood transfusion in the ELRA group were longer or more than those in the in situ resection group. The time of anhepatic phase for the ELRA group was 60–480 min, (231±83) min. On the 5th day after operation, except that the total bilirubin and direct bilirubin in the ELRA group were higher than those in the in situ resection group, the other indexes of liver function were similar between the two groups. The postoperative stay in ICU and the total postoperative hospital stay in the ELRA group were longer than those in the in situ resection group. Conclusions The advantage of “in situ first” ERLA principle for end stage HAE patients include resecting the HAE lesions radically without ex vivo liver resection and alleviating the hepatic ischemia and reperfusion injury. For the inevasible ELRA cases, “in situ first” principle could shorten the anhepatic phase and reduce intraoperative blood loss, and turn some cases to auxiliary partial autologous liver transplantation, which will reduce the risk of postoperative hepatic failure.
ObjectiveTo summarize the therapeutic effect and clinical significance of reduced volume lesion resection combined with drug therapy for end-stage alveolar hepatic echinococcosis.MethodClinical data of 46 patients with end-stage alveolar hepatic echinococcosis who received treatment of reduced volume lesion resection combined with drug therapy at Department of General Surgery of Qinghai Provincial People’s Hospital from March 2013 to October 2019 were retrospectively analyzed.ResultsAmong the 46 patients, 3 patients were lost to follow-up and 43 patients received follow-up. The follow-up time ranged from 3 to 79 months, with the median of 40 months. Fifteen patients died during the follow-up period, of which 5 patients with cerebral hydatid disease died during 16–36 months due to acute seizures and cerebral edema, 4 patients with multiple systemic metastases died during 9–36 months due to multiple organ failure, 2 patients with pulmonary echinococcosis died due to acute pulmonary embolism, 4 patients died in 2 years after operation due to recurrent biliary tract infection, other patients survived during follow-up period without distant organ metastasis.ConclusionReduced volume lesion resection combined with drug therapy in treatment of end-stage alveolar hepatic echinococcosis can improve the patient’s quality of life, reduce the hospital cost, reduce the occurrence of postoperative complications, and shorten the length of hospital stay.
Echinococcosis is a zoonotic and parasitic disease caused by tapeworms of the genus Echinococcus. The most common forms of the disease are cystic echinococcosis (CE) and alveolar echinococcosis (AE), caused by Echinococcus granulosus and Echinococcus mutilocularis, respectively, and posing a serious health challenge and economic burden to human society. The most adapted treatment is surgical excision plus chemotherapy, although which mostly is effective, the traumatic damage from the invasive procedure and the adverse effects of the prolonged chemotherapy are profound. Conventional preventions include controlling the source of infection, improving the sanitation in livestock slaughter, strengthening surveillance, and increasing public health education. However, the outcome is limited by the complicity of the geographical nature, cultural background, and unique lifestyle. Vaccination is the most safe and cost-effective way to control infectious diseases. The partial success of recombinant Eg95 as a veterinary vaccine had established a theoretical foundation for the development of a human echinococcosis vaccine, which will shed a light on the prevention, control, and eventual elimination of the human infection. There are promising vaccine candidates in the research and development pipelines in the form of parasite tissue extract proteins, recombinant proteins, nucleic acids, synthetic antigenic epitopes, and vector vaccines. These candidates have shown potential to induce protective humoral and cellular immune responses that block the invasion, eradicate the worm at an early stage, or prevent the onset of infection. We reviewed the progress in the vaccine development and discussed the challenges and solutions in the research and development to facilitate the licensure of a vaccine against human echinococcosis.
ObjectiveTo summarize the key operative points and efficacy of ex-vivo ex-vivo liver resection and autologous liver transplantation (ELRA) using various vascular materials for hepatic vein reconstruction in the treatment of end-stage hepatic alveolar echinococcosis (HAE). MethodThe clinicopathologic data of a patient with end-stage HAE who underwent ELRA combined with complex hepatic vein reconstruction were retrospectively analyzed. ResultsThe patient was a 60-year-old male who was admitted to the Sichuan Provincial People’s Hospital due to giant alveolar hydatid in the liver, with a body weight of 60 kg and a standard liver volume of 1 024.5 mL. The imaging showed that the hydatid invaded the first and second hepatic portals, middle hepatic vein, left hepatic vein, and retrohepatic inferior vena cava. The three-dimensional reconstruction of CT showed that the residual liver volume was 1 270.6 mL. The patient received supportive treatment after admission and underwent ELRA following strict evaluation. Intraoperatively, it was found that the multiple hepatic veins and retrohepatic inferior vena cava were widely invaded. The liver was split in vivo and the mass was excised ex vivo by “in vivo first” principle. The hepatic vein was repaired and reconstructed into a wide mouth outflow tract using allogeneic veins, autologous inferior mesenteric vein, and hepatic round ligaments, then performed the autotransplantation by wide mouth outflow-artificial inferior vena cava anastomosis (end to side). The operative time was 16 h, and the intraoperative blood loss was approximately 2 000 mL. FK506 was orally administered after operation, and low-molecular-weight heparin sodium was administered 24 h later for anticoagulation. The patient was returned to the general ward on the 6th day after the operation, and the enhanced CT scan showed that the hepatic outflow tract was unobstructed, without stenosis and thrombosis, and the patient was discharged on day 18 after the operation. The patient was pathologically diagnosed with alveolar echinococcosis. ConclusionsFrom the results of this case, combination of multiple vascular materials to reconstruct the hepatic outflow tract is an optional procedure for ELRA in treatment of end-stage HAE. Strict preoperative evaluation, skillful vascular anastomosis technique, and postoperative anticoagulation are important measures to maintain patency of postoperative reconstruction vessel.
Hepatic alveolar echinococcosis (HAE) is a severe zoonotic disease caused by Echinococcus multilocularis, primarily affecting the liver. Due to its insidious nature, the patients are often diagnosed at advanced stage, posing significant treatment challenges. We comprehensively examines the progress in surgical techniques for HAE management, focusing on various strategies across different disease stages. For the patients with early-stage HAE, ablation therapy has emerged as an effective treatment option. In the moderate to advanced cases, numerous surgical techniques and innovative approaches have been introduced, including laparoscopic surgery and liver transplantation, with particular emphasis on ex vivo liver resection and autotransplantation. These advancements offer more effective treatment options for the patients with advanced HAE. However, significant challenges persist, notably the preservation of adequate liver function while achieving complete lesion removal. Future research should prioritize the exploration and optimization of existing surgical methods, especially for advanced HAE cases. This includes refining surgical techniques through precise preoperative evaluation and staging, as well as developing novel surgical approaches to enhance safety and efficacy. Furthermore, multicenter and long-term follow-up prospective studies are crucial for validating the effectiveness of new surgical techniques and strategies. Through these concerted efforts, it is anticipated that the survival rates and quality of life for HAE patients will significantly be improved, marking a new era in the management of this complex disease.
ObjectiveTo evaluate roles and advantages of magnetic resonance imaging (MRI) and compute.tomography (CT) in preoperative assessment for hepatic alveolar echinococcosis. MethodMRI and CT scan imaging data of 60 patients with hepatic alveolar echinococcosis underwent radical surgery were retrospectively analyzed. ResultsMRI scanning could accurately identify the peripheral zone and marginal zone of hepatic alveolar echinococcosis lesions, and CT could not accurately show the above structures. In assessment of anatomic relation between vascular and lesions, MRI findings of 52 cases were in full compliance with corresponding intraoperative findings, and 8 cases were partial compliant. However, CT findings of 35 cases were in full compliance with corresponding intraoperative findings, 13 cases were partial compliant, and 12 cases were not compliant at all. In assessment of anatomic relation between biliary and lesions, MRCP could clearly show the bile duct, bile duct stenosis location and degree; CT scanning could only show widened bile duct, but could not accurately judge bile duct dilatation. ConclusionsMRI exerts some obvious advantages in preoperative evaluation of hepatic alveolar echinococcosis, and could accurately find relation between lesions and vascular or biliary system. MRI should be used as routine examination for patients with hepatic alveolar echinococcosis.
ObjectiveTo analyze the efficacy and safety of complete excision of the external capsule in the treatment of hepatic echinococcosis.MethodsThe clinical data of 90 patients with hepatic cystic echinococcosis admitted to our hospital from January 2016 to March 2018 were retrospectively analyzed. According to the different surgical methods, this patients were divided into two groups: the partial hepatectomy group and complete excision of the external capsule group, 45 cases in each group. The patient's general condition and the situation during hospitalization were analyzed, and the intraoperative conditions, postoperative complications, recurrence and mortality after one year in different surgical methods were compared.ResultsThe operative time and intraoperative blood loss in the partial hepatectomy group was significantly longer or more than that in the complete excision of the external capsule group (P<0.05), respectively. There was no significant difference between the two groups in hospitalization time (P>0.05). The incidence of postoperative complications was 11.11% in the partial hepatectomy group and 8.88% in the complete excision of the external capsule group. There was no significant difference between the two groups (P>0.05). After 1 year of followed-up, the recurrence rate of the partial hepatectomy group was 4.44%, and there was no recurrence in the complete excision of the external capsule group, and there was no significant difference between the two groups (P>0.05). There was no death in both groups.ConclusionsIn the surgical treatment of hepatic cystic echinococcosis, the most appropriate surgical method should be selected according to the specific conditions of the patient, and the complete excision of the external capsule has higher therapeutic effect and safety in the treatment of hepatic echinococcosis. It is worthy of clinical promotion.
ObjectiveTo explore the effect of hepatic outflow reconstruction with allograft vascular in ex-vivo liver resection and autologous liver transplantation.MethodThe clinical data of a patient with end-stage hepatic alveolar echinococcosis admitted to the Organ Transplantation Center of Sichuan Provincial People’s Hospital in August 2019 who underwent the ex-vivo liver resection and autologous liver transplantation combined with hepatic vein reconstruction with allograft vascular were analyzed retrospectively.ResultsThe patient, a 44-year-old female, was admitted to Sichuan Provincial People’s Hospital for “pain in the right abdomen accompanied by skin and sclera yellow staining for 6+ months and aggravated for 20+ d”. When the patient was admitted, the general condition was poor, such as hyperbilirubin and hypoproteinemia. The body mass was 45 kg and the standard liver volume was 852 mL. The hydatid lesions corroded the first and second hilum of the liver, the right hepatic vein and the posterior inferior vena cava. It was difficult to reconstruct the outflow tract of the hepatic vein in vivo, and it was extremely difficult to completely remove the hydatid lesions in vivo. After admission, the patient was generally in a good condition after the PTCD treatment, then after discussion and rigorous evaluation, the ex-vivo hepatectomy combined with autologous liver transplantation was required. The operative time was 15 h and the intraoperative blood loss was approximately 2 000 mL. After the operation, the routine treatment was performed, the antiviral treatment was continued, the international standardized ratio value was monitored at 1.5–2.5, and the anti-immune rejection drugs were not needed. The patient was transferred to the general ward on the 4th day after the operation, and there were no bile leakage, bleeding, infection and other complications. the result of postoperative pathological diagnosis was the alveolar echinococcosis. The re-examination of enhanced CT on 1 week after the operation suggested that the hepatic outflow tract of allograft vascular reconstruction was unobstructed, no stenosis and no thrombosis occurred. The patient was following-up at present.ConclusionsIn treatment of end-stage hepatic alveolar echinococcosis by autologous liver transplantation, reconstruction of hepatic outflow should be individualized. Allograft venous vessels could be used as ideal materials due to their advantages of matched tube diameter and length, no anti-rejection, and low risk of infection.
Objectives To observe the expression of key proteins in the NLRP3/Caspase-1 pathway of pyroptosis in the mouse model of hepatic Echinococcus multilocularis (Em) infection and explore its correlation. Methods Twenty-five BALB/c mice were randomly divided into the control group and the infected group. The infected group was injected with 0.2 mL suspension of protoscolex (including 3 000 protoscoleces) injected under the liver capsule to establish a model of secondary infection with hepatic Em. The control group was treated without any treatments and conventional feeding was conducted. The mice were sacrificed at 1, 2, 3, and 5 months after infection. The liver was harvested and observed for gross morphology. HE staining and transmission electron microscopy were performed to observe the histopathological changes. The expressions of key proteins in the NLRP3/Caspase-1 pathway of pyroptosis and the IL-1β, a downstream factor of pyroptosis in the liver were detected by immunohistochemistry, Western blot and ELISA. Results Compared with the control group, the cystic lesions on the surface of liver tissues in the infected group mice gradually increased and protruded from the liver surface with the extension of infection time. HE staining showed various pathological changes such as inflammatory cell infiltration and fibrous hyperplasia in the liver lesions to varying degrees. After 2 months of Em infection, transmission electron microscope observation showed that the cell membrane of hepatocytes were broken and discontinuous, conforming to the "punching" phenomenon of pyroptosis. The results of ELISA showed that the concentration of IL-1β in liver homogenate of mice after 1, 2, 3 and 5 months of Em infection were significantly higher than that of the control group, and the difference was statistically significant (F=127.2, P<0.05). Immunohistochemical examination showed that the positive cell ratios of Caspase-1 and NLRP3 in liver of mice infected with Em at 1, 2, 3 and 5 months, were higher than that of the control group, and the difference were statistically significant (F=114.6, P<0.05; F=85.89, P<0.05). The Western blot results showed that the relative expression levels of Caspase-1, Xiaopi D, and NLRP3 proteins in the liver of infected mice showed a trend of first increasing (the expression of Caspase-1 and GSDMD reached their peak at 1 month of infection, while the expression of NLRP3 reached its peak at 2 months of infection) and then decreasing. There were statistically significant differences between the infection groups at different time points and the control group, as well as comparison between the infection groups at different time points there were also statistically significant differences (all P<0.05). Conclusion It is feasible to establish mouse Em infection model by “skin incision and liver puncture through abdominal muscle layer”. There is a new type of programmed cell death, pyroptosis, after Em infection in mouse liver. It may play a role in inflammation amplification through pyroptosis NLRP3/Caspase-1 pathway.
ObjectiveTo analyze findings of 3.0 T diffusion weighted magnetic resonance (MR) in hepatic alveolar echinococcosis and evaluate potential role of apparent diffusion coefficients (ADC) in hepatic alveolar echinococcosis. MethodsThe clinical data of 26 patients with hepatic alveolar echinococcosis from November 2013 to January 2015 in this hospital were analyzed retrospectively. Hepatic MR scannings with diffusion weighted imaging (DWI) sequences (b-value=0, 600, 1 000, and 1 200 s/mm2) were performed in 26 patients with hepatic alveolar echinococcosis. The data of all the patients were stored to the PACS. The lesion features including type, size, distribution, location, and calcification (on the CT) were assessed by two deputy radiologists. TheADCvalues of marginal area, centre area, surrounding area of liver parenchyma tissue were measured at different b values (0, 600, 1 000, and 1 200 s/mm2) and compared. Results①There were 26 patients with a total of 29 lesions, of which involved multiple liver segments, 21 (72%) lesions located in the right lobe, 4 lesions involved simultaneously the left and right lobes. Twenty-four lesions invaded the hepatic vein or portal vein, 20 lesions invaded the intrahepatic bile duct, 10 lesions invaded the right adrenal gland. Seven patients occurred hilar and retroperitoneal lymph nodes metastases, 5 patients occurred pulmonary metastasis, 3 patients occurred brain metastasis, while 3 patients occurred lung and brain metastases simultaneously. ②There were 20 liquefied necrotic lesions, of which 5 lesions marginal area had multiple small round cysts in T2WI, 15 were only solid and without small cyst; The DWI of the centre area in 12 lesions showed a high signal, 8 lesions showed a low signal. There were 9 solid lesions, of which 2 lesions marginal area had multiple small round cysts in T2WI, 7 lesions marginal area were only solid and without cyst in T2WI. The DWI of the solid lesions showed a low signal, there was a "ring" high signal in the edge of lesions. ③At the same b value, theADCvalue of the centre area in the liquefied necrosis lesions were significantly higher than that in the solid lesions (P<0.01). At different b values, theADCvalue of the surrounding liver parenchyma tissue was significantly lower than that of the marginal area (P<0.01) and the centre area (P<0.01) in the liquefied necrosis lesions; theADCvalue of the centre area was significantly higher than that of the marginal area or surrounding liver parenchyma tissue (P<0.05, P<0.01) in the solid lesions. ConclusionsDWI could clearly distinguish structure and composition of hepatic alveolar echinococcosis and has a higher value in distinguishing from other liver dieases. The averageADCvalue of centre area in liquefied necrotic lesions is higher than that in solid lesions.