west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "electromyography" 30 results
  • Detection study of walking segments of children with cerebral-palsy based on surface electromyographic signals

    In this study, surface electromyography (sEMG) of the lower limbs of cerebral-palsy (CP) subjects in gait cycle was recorded and its parameters of gait cycle characters were analyzed to assess their clinical severity. Three algorithms, including integrated profile (IP), sample-entropy (SampEN) and smooth nonlinear energy operator (SNEO) algorithm, were applied to calculate the duration of walking sEMG segments in simulated SEMG signals. After that, the efficiency and accuracy were compared among these three algorithms. SNEO was then selected as the optimal algorithm among the three algorithms and employed for real sEMG signal processing of CP subjects. The results indicated that there was no significant difference in the accuracy of sEMG segement detection for the three algorithms. However, the computation speed of SNEO algorithm was much faster than those of the others and thus it was a suitable algorithm for detecting walking sEMG segments of CP subjects. In addition, the positive correlation was found between the clinical severity and the mean duration of walking sEMG segments in CP subjects. The results indicated that there was a significant difference in the three groups of CP subjects with different levels of severity. Our findings showed that the mean duration of walking sEMG segments could be considered as an assistant index to evaluate the clinical severity of CP subjects.

    Release date:2017-06-19 03:24 Export PDF Favorites Scan
  • Recognition of Walking Stance Phase and Swing Phase Based on Moving Window

    Wearing transfemoral prosthesis is the only way to complete daily physical activity for amputees. Motion pattern recognition is important for the control of prosthesis, especially in the recognizing swing phase and stance phase. In this paper, it is reported that surface electromyography (sEMG) signal is used in swing and stance phase recognition. sEMG signal of related muscles was sampled by Infiniti of a Canadian company. The sEMG signal was then filtered by weighted filtering window and analyzed by height permitted window. The starting time of stance phase and swing phase is determined through analyzing special muscles. The sEMG signal of rectus femoris was used in stance phase recognition and sEMG signal of tibialis anterior is used in swing phase recognition. In a certain tolerating range, the double windows theory, including weighted filtering window and height permitted window, can reach a high accuracy rate. Through experiments, the real walking consciousness of the people was reflected by sEMG signal of related muscles. Using related muscles to recognize swing and stance phase is reachable. The theory used in this paper is useful for analyzing sEMG signal and actual prosthesis control.

    Release date: Export PDF Favorites Scan
  • Research on muscle fatigue recognition model based on improved wavelet denoising and long short-term memory

    The automatic recognition technology of muscle fatigue has widespread application in the field of kinesiology and rehabilitation medicine. In this paper, we used surface electromyography (sEMG) to study the recognition of leg muscle fatigue during circuit resistance training. The purpose of this study was to solve the problem that the sEMG signals have a lot of noise interference and the recognition accuracy of the existing muscle fatigue recognition model is not high enough. First, we proposed an improved wavelet threshold function denoising algorithm to denoise the sEMG signal. Then, we build a muscle fatigue state recognition model based on long short-term memory (LSTM), and used the Holdout method to evaluate the performance of the model. Finally, the denoising effect of the improved wavelet threshold function denoising method proposed in this paper was compared with the denoising effect of the traditional wavelet threshold denoising method. We compared the performance of the proposed muscle fatigue recognition model with that of particle swarm optimization support vector machine (PSO-SVM) and convolutional neural network (CNN). The results showed that the new wavelet threshold function had better denoising performance than hard and soft threshold functions. The accuracy of LSTM network model in identifying muscle fatigue was 4.89% and 2.47% higher than that of PSO-SVM and CNN, respectively. The sEMG signal denoising method and muscle fatigue recognition model proposed in this paper have important implications for monitoring muscle fatigue during rehabilitation training and exercise.

    Release date:2022-08-22 03:12 Export PDF Favorites Scan
  • Mirror-type rehabilitation training with dynamic adjustment and assistance for shoulder joint

    The real physical image of the affected limb, which is difficult to move in the traditional mirror training, can be realized easily by the rehabilitation robots. During this training, the affected limb is often in a passive state. However, with the gradual recovery of the movement ability, active mirror training becomes a better choice. Consequently, this paper took the self-developed shoulder joint rehabilitation robot with an adjustable structure as an experimental platform, and proposed a mirror training system completed by next four parts. First, the motion trajectory of the healthy limb was obtained by the Inertial Measurement Units (IMU). Then the variable universe fuzzy adaptive proportion differentiation (PD) control was adopted for inner loop, meanwhile, the muscle strength of the affected limb was estimated by the surface electromyography (sEMG). The compensation force for an assisted limb of outer loop was calculated. According to the experimental results, the control system can provide real-time assistance compensation according to the recovery of the affected limb, fully exert the training initiative of the affected limb, and make the affected limb achieve better rehabilitation training effect.

    Release date:2021-06-18 04:50 Export PDF Favorites Scan
  • Analysis of multichannel intermuscular coupling characteristics during rehabilitation after stroke

    To better analyze the problem of abnormal neuromuscular coupling related to motor dysfunction for stroke patients, the functional coupling of the multichannel electromyography (EMG) were studied and the difference between stroke patients and healthy subjects were further analyzed to explore the pathological mechanism of motor dysfunction after stroke. Firstly, the cross-frequency coherence (CFC) analysis and non-negative matrix factorization (NMF) were combined to construct a CFC-NMF model to study the linear coupling relationship in bands and the nonlinear coupling characteristics in different frequency ratios during elbow flexion and extension movement. Furthermore, the significant coherent area and sum of cross-frequency coherence were respectively calculated to quantitatively describe the intermuscular linear and nonlinear coupling characteristics. The results showed that the linear coupling relationship between multichannel muscles was different in frequency bands and the overall coupling was stronger in low frequency band. The linear coupling strength of the stroke patients was lower than that of the healthy subjects in different frequency bands especially in beta and gamma bands. For the nonlinear coupling, the intermuscular coupling strength of stroke patients in different frequency ratios was significantly lower than that of the healthy subjects, and the coupling strength in the frequency ratio 1∶2 was higher than that in the frequency ratio 1∶3. This method can provide a theoretical basis for exploring the intermuscular coupling mechanism of patients with motor dysfunction.

    Release date:2019-12-17 10:44 Export PDF Favorites Scan
  • Design of functional array electrode stimulation system with surface electromyography feedback

    In order to solve the problems of insufficient stimulation channels and lack of stimulation effect feedback in the current electrical stimulation system, a functional array electrode electrical stimulation system with surface electromyography (sEMG) feedback was designed in this paper. Firstly, the effectiveness of the system was verified through in vitro and human experiments. Then it was confirmed that there were differences in the number of amperage needed to achieve the same stimulation stage among individuals, and the number of amperage required by men was generally less than that of women. Finally, it was verified that the current required for square wave stimulation was smaller than that for differential wave stimulation if the same stimulation stage was reached. This system combined the array electrode and sEMG feedback to improve the accuracy of electrical stimulation and performed the whole process recording of feedback sEMG signal in the process of electrical stimulation, and the electrical stimulation parameters could change with the change of the sEMG signal. The electrical stimulation system and sEMG feedback worked together to form a closed-loop electrical stimulation working system, so as to improve the efficiency of electrical stimulation rehabilitation treatment. In conclusion, the functional array electrode electrical stimulation system with sEMG feedback developed in this paper has the advantages of simple operation, small size and low power consumption, which lays a foundation for the introduction of electrical stimulation rehabilitation treatment equipment into the family, and also provides certain reference for the development of similar products in the future.

    Release date:2021-02-08 06:54 Export PDF Favorites Scan
  • Targeted muscle reinnervation: a surgical technique of human-machine interface for intelligent prosthesis

    Objective To review targeted muscle reinnervation (TMR) surgery for the construction of intelligent prosthetic human-machine interface, thus providing a new clinical intervention paradigm for the functional reconstruction of residual limbs in amputees. MethodsExtensively consulted relevant literature domestically and abroad and systematically expounded the surgical requirements of intelligent prosthetics, TMR operation plan, target population, prognosis, as well as the development and future of TMR. Results TMR facilitates intuitive control of intelligent prostheses in amputees by reconstructing the “brain-spinal cord-peripheral nerve-skeletal muscle” neurotransmission pathway and increasing the surface electromyographic signals required for pattern recognition. TMR surgery for different purposes is suitable for different target populations. Conclusion TMR surgery has been certified abroad as a transformative technology for improving prosthetic manipulation, and is expected to become a new clinical paradigm for 2 million amputees in China.

    Release date:2023-08-09 01:37 Export PDF Favorites Scan
  • Feature fusion of electrocardiogram and surface electromyography for estimating the fatigue states during lower limb rehabilitation

    In the process of lower limb rehabilitation training, fatigue estimation is of great significance to improve the accuracy of intention recognition and avoid secondary injury. However, most of the existing methods only consider surface electromyography (sEMG) features but ignore electrocardiogram (ECG) features when performing in fatigue estimation, which leads to the low and unstable recognition efficiency. Aiming at this problem, a method that uses the fusion features of ECG and sEMG signal to estimate the fatigue during lower limb rehabilitation was proposed, and an improved particle swarm optimization-support vector machine classifier (improved PSO-SVM) was proposed and used to identify the fusion feature vector. Finally, the accurate recognition of the three states of relax, transition and fatigue was achieved, and the recognition rates were 98.5%, 93.5%, and 95.5%, respectively. Comparative experiments showed that the average recognition rate of this method was 4.50% higher than that of sEMG features alone, and 13.66% higher than that of the combined features of ECG and sEMG without feature fusion. It is proved that the feature fusion of ECG and sEMG signals in the process of lower limb rehabilitation training can be used for recognizing fatigue more accurately.

    Release date:2021-02-08 06:54 Export PDF Favorites Scan
  • Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot

    In order to help the patients with upper-limb disfunction go on rehabilitation training, this paper proposed an upper-limb exoskeleton rehabilitation robot with four degrees of freedom (DOF), and realized two control schemes, i.e., voice control and electromyography control. The hardware and software design of the voice control system was completed based on RSC-4128 chips, which realized the speech recognition technology of a specific person. Besides, this study adapted self-made surface eletromyogram (sEMG) signal extraction electrodes to collect sEMG signals and realized pattern recognition by conducting sEMG signals processing, extracting time domain features and fixed threshold algorithm. In addition, the pulse-width modulation(PWM)algorithm was used to realize the speed adjustment of the system. Voice control and electromyography control experiments were then carried out, and the results showed that the mean recognition rate of the voice control and electromyography control reached 93.1% and 90.9%, respectively. The results proved the feasibility of the control system. This study is expected to lay a theoretical foundation for the further improvement of the control system of the upper-limb rehabilitation robot.

    Release date:2016-12-19 11:20 Export PDF Favorites Scan
  • Gesture accuracy recognition based on grayscale image of surface electromyogram signal and multi-view convolutional neural network

    This study aims to address the limitations in gesture recognition caused by the susceptibility of temporal and frequency domain feature extraction from surface electromyography signals, as well as the low recognition rates of conventional classifiers. A novel gesture recognition approach was proposed, which transformed surface electromyography signals into grayscale images and employed convolutional neural networks as classifiers. The method began by segmenting the active portions of the surface electromyography signals using an energy threshold approach. Temporal voltage values were then processed through linear scaling and power transformations to generate grayscale images for convolutional neural network input. Subsequently, a multi-view convolutional neural network model was constructed, utilizing asymmetric convolutional kernels of sizes 1 × n and 3 × n within the same layer to enhance the representation capability of surface electromyography signals. Experimental results showed that the proposed method achieved recognition accuracies of 98.11% for 13 gestures and 98.75% for 12 multi-finger movements, significantly outperforming existing machine learning approaches. The proposed gesture recognition method, based on surface electromyography grayscale images and multi-view convolutional neural networks, demonstrates simplicity and efficiency, substantially improving recognition accuracy and exhibiting strong potential for practical applications.

    Release date:2024-12-27 03:50 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content