Objective To observe the proliferation and migration of endothelial cells after 30% total burn surface area (TBSA) of deep partial thickness scald, and the effect of basic fibroblast growth factor (bFGF) on angiogenesis during wound healing.Methods A total of 133 male Wistar ratswere divided randomly into normal control (n=7), injured control group (n=42), bFGF group (n=42) andanti-c-fos group (n=42). The apoptosis expression of fibroblasts was determinedwith in situ hybridization and the changes of proliferation cell nuclear antigen(PCNA), focal adhesion rinase(FAK), c-fos and extracellular signalregulated kinase(ERK) proteins expression were detected with immunohistochemistry staining technique after 3 hours, 6 hours, 1 day, 3 days, 7 days, 14 days and 21 days of scald.Results In injured control group and bFGF group, theproliferation rate of the vascular endothelial had evident changes 7 days and14 days after scald; the expression of FAK was increased 14 days after scald. ERK proteins expression was different between injury control group and bFGF group at initial stage after scald. Stimulation of ERKs by bFGF led to up-regulation of c-fos and b expression of FAK. Conclusion Exogenous bFGF extended the influence on wound healing process by ERK signaling pathway, affecting migration cascade of vascular endothelial cell. The oncogene proteins play an important role on accelerating angiogenesis duringwound healing.
ObjectiveTo summarize the progress on the injury mechanism of vascular endothelial cells in atherosclerosis.MethodsThe latest progress was reviewed in recent literatures.ResultsAll kinds of etiological factors have activated NF-kappa B and cytokines in the development of atherosclerosis, which lead to expression of cell adhesive molecules and adhesion of monocytes to vascular endothelial cells.A variety of inflammatory mediums are released, which can directly damage endothelial cells.Besides, the inflammatory mediums make monocytes and neutrophils attach to endothelial cells by immune mechanisms, which injure the endothelial cells more severely. Meanwhile the damaged membrance structure leads to the production of AECA which activates the complementary system. Then the vascular endothelial cell injury is aggravated and the development of atherosclerosis accelerated. ConclusionIt is very important to recognize the injury mechanism of vascular endothelial cells in the development of atherosclerosis for prevention and treatment of atherosclerosis.
Objective To analyze the expressions of galectin-3, human bone marrow endothelial cell-1 (HBME-1),cytokeratin (CK)19, and RET in benign and malignant thyroid tumor and to discuss their clinical significances. Methods The clinicopathologic and immunohistochemical staining data of 131 patients with benign and malignant thyroid tumor were analyzed retrospectively, including 45 patients with malignant thyroid tumor, 86 patients with benign thyroidtumor. The expressions of galectin-3, HBME-1, CK19, and RET in the benign and malignant thyroid tumor were detectedby immunohistochemical staining. Results The positive expression rates of the galectin-3, HBME-1, CK19, and RET in the malignant thyroid tumor were 97.8% (44/45), 88.9% (40/45), 100% (45/45), and 71.1% (32/45), respectively,which in the benign thyroid tumor were 9.3% (8/86), 12.8% (11/86), 37.2% (32/86), and 8.1% (7/86), respectively, the differences were statistically significant (P<0.05). The diagnostic sensitivity, specificity, and accordance rates were 97.8 %, 90.7%, and 93.1% for the galectin-3, respectively;88.9%, 87.2%, and 87.8% for the HBME-1, respec-tively;100%, 62.8%, and 75.6% for the CK19, respectively;71.1%, 91.9%, and 84.7% for the RET, respectively. Conclusions The expression levels of galectin-3, HBME-1, CK19, and RET in malignant thyroid tumor are significantly higher than those in benign thyroid tumor. Galectin-3, HBME-1, CK19, and RET can be important factors for identifying the benign and malignant tumor and their biological behaviors. Galectin-3 has a high reference value in the diagnosis of thyroid carcinoma.
Objective To summarize the research progress on the regulation of hepatic sinusoidal microenvironment to promote liver regeneration based on liver sinusoidal endothelial cells (LSECs), aiming to further clarify the mechanism of liver regeneration and provide new ideas and methods for clinical promotion of liver regeneration and prevention of liver failure. Method The basic and clinical research studies on LSECs and liver regeneration at home and abroad in recent years were searched and reviewed. Results Differentiated LSECs played an important role in liver regeneration, regulated the homeostasis of hepatic sinusoid microenvironment by paracrine and autocrine, and participated in the whole process of promoting liver regeneration, such as hepatocyte proliferation and neovascularization after acute and chronic liver injury. Conclusion In the process of liver regeneration after all kinds of acute and chronic liver injury, LSECs promote liver regeneration by regulating hepatic sinusoid microenvironment, which will provide new strategies and methods for clinical promotion of liver regeneration and prevention of liver failure after hepatectomy.
Objective To study the effect of vascular endothelial cell growth factor (VEGF) on repair of bone defect with cortical bone allograft. Methods Forty five New Zealand white rabbits, weighted 2.5-3.0 kg, were made bone defect model of 1.5 cm in length in the bilateral radii and then were randomly divided into 3groups. The defect was repaired with only cortical bone allograft in the control group, with the cortical bone allograft and local injection of human recombinantVEGF in the experimental group, and with the cortical bone allograft and abdominal injection of VEGF PAb3 in the antagonist group. Roentgenography, immunohistochemical staining and tetracycline labelling were carried out to evaluate the reparative results 1, 3, 5, 8 and 16 weeks after operation. Results Immunohistochemical staining results showed that a great deal of blood vessels formed in the experimental group, and the number of blood vessels increased gradually with the time and reached the highest value at the 8th week. Tetracyclinelabelling showed the same result.The best results in callus formation, ossification rate and count of microvascular density were shown in the experimental group, while those in the control group were significantly better than those in the antagonist group (Plt;0.05),but there was no significant difference between the experimental group and the control group at the 8th week and the 16th week (Pgt;0.05). Conclusion VEGF can accelerates the bone formation and angiogenesis in the bone allografts, thus it can promote the repair of bone defects.
Objective To study whether the porcine endothelial cells (PECs) lines transfected by HLA-G1 can alter the lysis mediated by human peripheral blood mononuclear cell (PBMC) and natural killer cell 92(NK-92). Methods By use of liposomes pack, the pcDNA3.0 eukaryotic expression vector carrying HLA-G1 was transfected into PECs. Using indirect immunofluorescence and RT-PCR assays, the HLA-G1 expression in PECs was detected. The alteration of the lysis mediated by PBMC and NK-92 was detected by51Cr-release assays. Results HLA-G1 expression could be detected in PECs after transfection of HLA-G1 at the levels of protein andRNA. It also could be found that the survival rate of transfected PECs was muchhigher than that of non-transfected PECs, when both of them faced the lysismediated by human PBMC and NK-92.After transfecting the expression of HLA-G1 could be found in the transfected PECs and the lysis mediated by PBMC and NK-92 to PECs decreased obviously (Plt;0.05). Conclusion The PECs- transfected by HLAG1 can decrease the NK lysis, so that it may provide us a new thought to inhibit the xeno-cell-rejection.
In order to study the effect of vascular endothelial cell growth factor (VEGF) on the survival of skin flap 30 SD rats were used. A randomized flap measuring 7.5 cm x 3.0 cm was created on the back of each SD rat. The treatment group (n = 10) received VEGF 40 ng/flap by subcutaneous injection with microinjector during and 24 hours after operation. The control groups received heparin 16 U/flap (n = 10) or normal saline 800 microliters/flap (n = 10). After operation, on the 3rd and 11th day, the survival rate of the skin flaps and the dermovascular density of each flap were investigated by histological and histo-morphometrical examination. The results showed that there was no significant difference in the survival rate between the treatment group and the controls on the 3rd day after operation, while on the 11th day, there was a significant difference between them, and the survival rate was much higher in the treatment group. Besides, dermovascular density was much more increased in the treatment group than that in the controls, especially in the distal 1/3 of the flap (P lt; 0.02). The conclusion was that VEGF could .
Objective To explore the facilitative effects of different allogenic cells injected into the denervated muscles on the nerve regeneration, the protection of the myoceptor degeneration, and the promotion for rehabilitation of the muscular function. Methods Schwann cells, myoblast cells, and renal endothelial cells were prepared from 400 SD rats aged 7 days and weighing 20.0±2.3 g. Thirty-six adult female SD rats weighing 120-150 g were randomly divided into 4 groups(n=9). Under the asepsis condition, the left ischiadic nerves of all the SD rats were cut off, and the primary suture of the epineurium was performed. After operation, the different corresponding cells were injected into the triceps muscles of the rat calf in each group once per week for 4 times in all. One ml of Schwann cells (1×106/ml) was injected into the rats in Group A; 1 ml of the mixed cells of Schwann cells and myoblast cells (1×106/ml) was injected into the rats in Group B; 1 ml of the extract from the mixed cells of Schwann cells, myoblast cells, and renal endothelial cells (1×106/ml) was injected into the rats in Group C; 1 ml of the culture medium without any serum was injected into the rats in Group D as a control. After operation, observation was made for the general condition of the rats; 3 months after operation, enzymohistochemistry and the CJun expression were performedin the ventricornual motor neuron. At the proximal and the distal ends of the nerve suture, the density of neurilemma cells in the unit area and the area size of the regenerated nerve fibers were observed and measured. Results The affected limbs of the rats in Groups A, B and C improved 13 months after operation. The ulcers and swelling at the ankles gradually relieved and the rats could move normally 3 months after operation. However, the affected limbsof the rats in Group D still had ulcers and swelling, with an obvious contracture of the toes and a difficult movement. Three months after operation, the number of the target muscle myoceptor, the number of the Actin positive cells, the activity of the various enzymes in the denervated muscles, and the histological changes of the regenerated nerves were better in Group C than in Groups A and B (P<0.01); and they were all better in Groups A, B and C than in Group D(Plt;0.01). Conclusion Schwann cells, the mixture of Schwann cells and myoblast cells, and the extract from the mixture of Schwann cells, myoblast cells and renal endothelial cells can all promote neurotization and rehabilitation of the muscular function, and protect against the myoceptor degeneration. However, the effect of the extract is superior to that of Schwann cells or the mixed cells.
ObjectiveTo investigate the mechanism of G protein coupled receptor kinase interacting protein 1 (GIT1) affecting angiogenesis by comparing the differentiation of bone marrow mesenchymal stem cells (BMSCs) differentiated into endothelial cells between GIT1 wild type mice and GIT1 gene knockout mice.MethodsMale and female GIT1 heterozygous mice were paired breeding, and the genotypic identification of newborn mice were detected by PCR. The 2nd generation BMSCs isolated from GIT1 wild type mice or GIT1 gene knockout mice were divided into 4 groups, including wild type control group (group A), wild type experimental group (group A1), GIT1 knockout control group (group B), and GIT1 knockout experimental group (group B1). The cells of groups A1 and B1 were cultured with the endothelial induction medium and the cells of groups A and B with normal cluture medium. The expressions of vascular endothelial growth factor receptor 2 (VEGFR-2), VEGFR-3, and phospho-VEGFR-2 (pVEGFR-2), and pVEGFR-3 proteins were detected by Western blot. The endothelial cell markers [von Willebrand factor (vWF), platelet-endothelial cell adhesion molecule 1 (PECAM-1), and vascular endothelial cadherin (VE-Cadherin)] were detected by flow cytometry. The 2nd generation BMSCs of GIT1 wild type mice were divided into 4 groups according to the different culture media: group Ⅰ, primary cell culture medium; group Ⅱ, cell culture medium containing SAR131675 (VEGFR-3 blocker); group Ⅲ, endothelial induction medium; group Ⅳ, endothelial induction medium containing SAR131675. The endothelial cell markers (vWF, PECAM-1, and VE-Cadherin) in 4 groups were also detected by flow cytometry.ResultsWestern blot results showed that there was no obviously difference in protein expressions of VEGFR-2 and pVEGFR-2 between groups; and the expressions of VEGFR-3 and pVEGFR-3 proteins in group A1 were obviously higher than those in groups A, B, and B1. The flow cytometry results showed that the expressions of vWF, PECAM-1, and VE-Cadherin were significantly higher in group A1 than in groups A, B, and B1 (P<0.05), and in group B1 than in groups A and B (P<0.05); but no significant difference was found between groups A and B (P>0.05). In the VEGFR-3 blocked experiment, the flow cytometry results showed that the expressions of vWF, PECAM-1, and VE-Cadherin were significantly higher in group Ⅲ than in groupsⅠ, Ⅱ, and Ⅳ, and in group Ⅳ than in groups Ⅰ and Ⅱ (P<0.05); but no significant difference was found between groups Ⅰ and Ⅱ (P>0.05).ConclusionGIT1 mediates BMSCs of mice differentiation into endothelial cells via VEGFR-3, thereby affecting the angiogenesis.
【Abstract】Objective To observe concentration changes of substances including hepatocyte growth factor(HGF),interleukin-6(IL-6),nitric oxide(NO),nitric oxide synthase(NOS) that were secreted by sinusoidal endothelial cells(SECs) in different shear stress and study the effects of shear stress on the secretions of SECs.Methods To establish a hemodynamics equipment and to set up a way to separate and culture SEC. The rats were divided into two groups: the control group (shear stress was 0 dyn/cm2) and study group. Study group was divided into three subgroups according to shear stress (12, 24 and 48 dyn/cm2). Sinusoidal endothelial cell culture mediums were examined in different shear stress and phases.Results HGF, IL-6, NO and NOS secreted by sinusoidal endothelial cells in different shear stress were distinctive and had positive correlation with shear stress and action time. Conclusion In vitro, the secretion of HGF,IL-6,NO and NOS of sinusoidal endothelial cells are increased along with shear stress rising, which suggests that the rising pressure in portal vein after hepatectomy may result in SECs activated.Activated SECs then secret many cytokines and medias to trigger the regeneration of liver.