west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "endothelial cells" 47 results
  • Endothelial injury and its repair strategies after intravascular stents implantation

    Coronary atherosclerotic heart disease is a serious threat to human life and health. In recent years, the main treatment for it is to implant the intravascular stent into the lesion to support blood vessels and reconstruct blood supply. However, a large number of experimental results showed that mechanical injury and anti-proliferative drugs caused great damage after stent implantation, and increased in-stent restenosis and late thrombosis risk. Thus, maintaining the integrity and normal function of the endothelium can significantly reduce the rate of thrombosis and restenosis. Stem cell mobilization, homing, differentiation and proliferation are the main mechanisms of endothelial repair after vascular stent implantation. Vascular factor and mechanical microenvironmental changes in implanted sites have a certain effect on re-endothelialization. In this paper, the process of injury caused by stent implantation, the repair mechanism after injury and its influencing factors are expounded in detail. And repairing strategies are analyzed and summarized. This review provides a reference for overcoming the in-stent restenosis, endothelialization delay and late thrombosis during the interventional treatment, as well as for designing drug-eluting and biodegradation stents.

    Release date:2018-04-16 09:57 Export PDF Favorites Scan
  • Effect of natural hirudin on angiogenesis of human microvascular endothelial cells

    Objective To explore the effect of natural hirudin on proliferation of human microvascular endothelial cells (HMVECs) and its preliminary mechanism of promoting angiogenesis. Methods Three-dimensional culture models of HMVECs were established in vitro and observed by inverted phase contrast microscopy after 24 hours of culturing. Then, the three-dimensional culture models of HMVECs were treated with different concentrations (1, 4, and 7 ATU/mL) of the natural hirudin, respectively, and Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum as control. The cell proliferations of 4 groups were detected by cell counting kit 8 (CCK-8) method at 24, 48, and 72 hours; the angiogenesis of 4 groups were observed by tube formation assay at 24 hours; the expressions of vascular endothelial growth factor (VEGF) and Notch1 of HMVECs in 4 groups were observed by immunofluorescence staining at 24 hours. Results The observation of cells in three-dimensional culture models showed that HMVECs attached to Matrigel well, and the cells formed tube structure completely after 24 hours. The results of CCK-8 test showed that the absorbance (A) value of 1 and 4 ATU/mL groups were higher than that of control group at each time point (P<0.05), andA value of 4 ATU/mL group was the highest. The A value of 7 ATU/mL group was significantly lower than those of 1 and 4 ATU/mL groups and control group (P<0.05). The tube formation assay showed that the tube structure was more in 1 and 4 ATU/mL groups than in 7 ATU/mL group and control group, and in 4 ATU/mL group than in 1 ATU/mL group, showing significant differences (P<0.05). There was no significant difference between 7 ATU/mL group and control group (P>0.05). The results of immunofluorescence staining showed that compared with control group, the Notch1 expression was higher in 1 and 4 ATU/mL groups and lower in 7 ATU/mL group; and there was significant difference between 4 and 7 ATU/mL groups and control group (P<0.05). The VEGF expression was higher in 1, 4, and 7 ATU/mL groups than in control group, in 4 ATU/mL group than in 1 and 7 ATU/mL groups, showing significant differences (P<0.05). Conclusion Natural hirudin can promote angiogenesis at low and medium concentrations, but suppress angiogenesis at high concentrations. Its mechanism may be related to the VEGF-Notch signal pathway.

    Release date:2018-12-04 03:41 Export PDF Favorites Scan
  • SCD40 ligand expression and inflammatory response in acute aortic dissection patients

    Objective To investigate the relationship of cluster of differentiation 40L (CD40L) between inflammatory response mediated by vascular endothelial injury and Stanford A type aortic dissection (STAAD). Methods In this study from August 2016 to February 2017, a total of 215 blood samples from 95 STAAD patients (67 males and 28 females aged 48.33±12.19 years) and 120 healthy volunteers (94 males and 26 females aged 48.64±10.13 years) were collected. The patients with aortic dissection were taken blood 1 hour before the operation and the healthy volunteers were taken blood from the elbow vein. All STAAD patients were diagnozed by computed tomography angiography (CTA) and patients with Marfan syndrome were excluded. Blood samples were tested by enzyme-linked immunosorbent assay (ELISA) for CD40L, vascular cell adhesion molecule (VCAM-1), E-selectin, interleukin-1 (IL-1) beta, IL-6, tumor necrosis factor-alpha (TNF-α) and so on. ResultsCompared with the healthy population, the level of SCD40L(26.87±5.50 ng/ml vs. 13.39±4.03 ng/ml, P<0.001) in the STAAD patients was significantly higher. E-Selectin (116.62±25.24 ng/ml vs. 77.05±14.30 ng/ml, P<0.001), VCAM-1 (P<0.001), TNF-α (55.35±9.12 ng/ml vs. 37.33±5.61 pg/ml, P<0.001), IL-1β (62.12±13.37 ng/ml vs. 48.68±9.86 pg/ml, P<0.001), IL-6 (499.54±90.45 ng/ml vs. 422.44±34.00 pg/ml, P<0.001) significantly increased. Conclusion The increased expression of SCD40L in STAAD patients and the inflammatory reaction induced by endothelial injury in aortic dissection patients are obvious.

    Release date:2019-03-29 01:35 Export PDF Favorites Scan
  • Study on visfatin-induced inflammation and necroptosis via LOX-1 in human umbilical vein endothelial cells

    The aim of the study is to identify the effects and underlying mechanisms of visfatin on inflammation and necroptosis in vascular endothelial cells. Human umbilical vein endothelial cells (HUVECs) were stimulated with visfatin or pretreated with Polyinosinic acid (LOX-1 inhibitor). By using the Western blot, RT-PCR, immunocytochemistry, enzyme-linked immunosorbent assay (ELISA), MTT and flow cytometry technique, the occurrence of inflammation and necroptosis in HUVECs were evaluated. Our results showed that 100 ng/mL visfatin significantly increased the mRNA and protein expression of monocyte chemotactic protein 1 (MCP-1) and LOX-1 after 24 hours’ treatment in HUVECs. However, pretreatment with Polyinosinic acid could significantly reduce the expression of MCP-1 compared with visfatin group. Additionally, 100 ng/mL visfatin could induce the production of necrotic features and increase the mRNA expression of BMF (one of the markers of necroptosis), while pretreating with Polyinosinic acid markedly downregulated the mRNA expression of BMF gene and promoted the cell proliferation. These results indicate that visfatin might induce inflammation and necroptosis via LOX-1 in HUVECs, suggesting that visfatin plays a central role in the development of atherosclerosis.

    Release date:2020-12-14 05:08 Export PDF Favorites Scan
  • Heterotopic osteogenesis study of tissue engineered bone by co-culture of vascular endothelial cells and adipose-derived stem cells

    ObjectiveTo investigate the heterotopic osteogenesis of tissue engineered bone using the co-culture system of vascular endothelial cells (VECs) and adipose-derived stem cells (ADSCs) as seed cells.MethodsThe partially deproteinized biological bone (PDPBB) was prepared by fibronectin combined with partially deproteinized bone (PDPB). The ADSCs of 18-week-old Sprague Dawley (SD) rats and VECs of cord blood of full-term pregnant SD rats were isolated and cultured. Three kinds of tissue engineered bone were constructed in vitro: PDPBB+VECs (group A), PDPBB+ADSCs (group B), PDPBB+co-cultured cells (VECs∶ADSCs was 1∶1, group C), and PDPBB was used as control group (group D). Scanning electron microscopy was performed at 10 days after cell transplantation to observe cell adhesion on scaffolds. Forty-eight 18-week-old SD rats were randomly divided into groups A, B, C, and D, with 12 rats in each group. Four kinds of scaffolds, A, B, C, and D, were implanted into the femoral muscle bags of rats in corresponding groups. The animals were killed at 2, 4, 8, and 12 weeks after operation for gross observation, HE staining and Masson staining histological observation, and the amount of bone collagen was measured quantitatively by Masson staining section.ResultsScanning electron microscopy showed that the pores were interconnected in PDPB materials, and a large number of lamellar protein crystals on the surface of PDPBB modified by fibronection were loosely attached to the surface of the scaffold. After 10 days of co-culture PDPBB and cells, a large number of cells attached to PDPBB and piled up with each other to form cell clusters in group C. Polygonal cells and spindle cells were mixed and distributed, and some cells grew along bone trabeculae to form cell layers. Gross observation showed that the granulation tissue began to grow into the material pore at 2 weeks after operation. In group C, a large number of white cartilage-like substances were gradually produced on the surface of the material after 4 weeks, and the surface of the material was uneven. At 12 weeks, the amount of blood vessels on the surface of group A increased, and the material showed consolidation; there was a little white cartilage-like material on the surface of group B, but the pore size of the material did not decrease significantly; in group D, the pore size of the material did not decrease significantly. Histological observation showed that there was no significant difference in the amount of bone collagen between groups at 2 weeks after operation (F=2.551, P=0.088); at 4, 8, and 12 weeks after operation, the amount of bone collagen in group C was significantly higher than that in other 3 groups, and that in group B was higher than that in group D (P<0.05); there was no significant difference between group A and groups B, D (P>0.05).ConclusionThe ability of heterotopic osteogenesis of tissue engineered bone constructed by co-culture VECs and ADSCs was the strongest.

    Release date:2019-09-18 09:49 Export PDF Favorites Scan
  • A PRELIMINARY STUDY ON VASCULAR ENDOTHELIAL GROWTH FACTOR C GENE MODIFIED LYMPH NODE TRANSPLANTATION IN PROMOTING PROLIFERATION OF LYMPHATIC ENDOTHELIAL CELLS

    Objective To investigate the effects of vascular endothelial growth factor C (VEGF-C) gene modified lymph nodes on promoting proliferation of lymphatic endothelial cells in the surrounding tissues. Methods Thirty-six Sprague Dawley rats, weighing 200.1-271.5 g, were randomly divided into 2 groups (n=18). After the in situ axillary lymph nodes transplantation models were established in both groups, 1.5 × 108 PFU Ad-VEGF-C-Flag and Ad-Flag were injected into the transplanted lymph nodes in experimental group and control group, respectively. At 3 days after injection, the axillary lymph nodes were harvested to observe the expression of Flag; at 1, 2, and 4 weeks after injection, the axillary lymph nodes and the surrounding tissues were harvested to observe the expression of Prxo-1 protein and to calculate the fluorescence density; at 2 and 4 weeks after injection, the absorbance (A) value of treated blood at 620 nm was calculated to observe lymphatic back-flow function improvement; the rats without treatment served as normal control group, and the rats with in situ axillary lymph nodes transplantation model served as blank control group. Results At 3 days after injection, the expression of Flag could be detected in experimental group and control group. The fluorescence density of Prox-1 protein in experimental group increased at 1, 2, and 4 weeks, and it was significantly higher than that in control group (P lt; 0.05). The A values of normal control group and blank control group were 0.539 ± 0.020 and 0.151 ± 0.007, respectively. The A values of experimental group and control group were 0.170 ± 0.011 and 0.168 ± 0.010 at 2 weeks, and 0.212 ± 0.016 and 0.197 ± 0.006 at 4 weeks, which were significantly lower than those of normal control group (P lt; 0.05), but no significant difference was found when compared with blank control group, and between the experimental group and control group (P gt; 0.05). Conclusion The VEGF-C gene modified lymph nodes can stimulate the proliferation of lymphatic endothelial cells in the surrounding tissues. However, it has no improved effect on lymphatic back-flow function in the affected limb.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • STUDY ON HUMAN LEUKOCYTE ANTIGEN G1 REDUCING XENO-CELL-REJECTION BYTRANSFECTINGPORCINE ENDOTHELIAL CELLS

    Objective To study whether the porcine endothelial cells (PECs) lines transfected by HLA-G1 can alter the lysis mediated by human peripheral blood mononuclear cell (PBMC) and natural killer cell 92(NK-92). Methods By use of liposomes pack, the pcDNA3.0 eukaryotic expression vector carrying HLA-G1 was transfected into PECs. Using indirect immunofluorescence and RT-PCR assays, the HLA-G1 expression in PECs was detected. The alteration of the lysis mediated by PBMC and NK-92 was detected by51Cr-release assays. Results HLA-G1 expression could be detected in PECs after transfection of HLA-G1 at the levels of protein andRNA. It also could be found that the survival rate of transfected PECs was muchhigher than that of non-transfected PECs, when both of them faced the lysismediated by human PBMC and NK-92.After transfecting the expression of HLA-G1 could be found in the transfected PECs and the lysis mediated by PBMC and NK-92 to PECs decreased obviously (Plt;0.05). Conclusion The PECs- transfected by HLAG1 can decrease the NK lysis, so that it may provide us a new thought to inhibit the xeno-cell-rejection.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • Metformin inhibiting the activation of NLRP3 inflammasome and pyroptosis in diabetic retinal vascular endothelial cells

    Objective To observe the effect of metformin (Met) on inflammatory bodies and focal death in human retinal microvascular endothelial cells (hRMEC) in diabetes mellitus (DM) microenvironment. MethodsExperimental research was divided into in vivo animal experiment and in vitro cell experiment. In vivo animal experiments: 9 healthy C57BL/6J male mice were randomly divided into DM group, normal control group, and DM+Met group, with 3 mice in each group. DM group and DM+Met group mice were induced by streptozotocin to establish DM model, and DM+Met group was given Met 400 mg/ (kg · d) intervention. Eight weeks after modeling, the expression of NLRP3, cleaved-membrane perforating protein D (GSDMD) and cleaved-Caspase-1 in the retina of mice in the normal control group, DM group and DM+Met group were observed by immunohistochemical staining. In vitro cell experiments: hRMEC was divided into conventional culture cell group (N group), advanced glycation end products (AGE) group, and AGE+Met group. Joining the AGE, AGE+Met groups cells were induced by 150 μg/ml of glycation end products, and 2.0 mmol/L Met was added to the AGE+Met group. Pyroptosis was detected by flow cytometry; 2',7'-dichlorofluorescein diacetate (DCFH-DA) fluorescent probe was used to detect the expression of reactive oxygen species (ROS) in cells of each group. Real-time fluorescence quantitative polymerase chain reaction and Western blot were used to detect the relative mRNA and protein expression levels of NLRP3, cleaved-GSDMD, cleaved-Caspase-1 in each group of cells. Single factor analysis of variance was used for comparison among the three groups. ResultsIn vivo animal experiments: compared with the DM group, the expression of NLRP3, cleaved-GSDMD, and cleaved-Caspase-1 in the retina of normal control group and DM+Met group mice was significantly reduced, with significant difference among the 3 groups (F=43.478, 36.643, 24.464; P<0.01). In vitro cell experiment and flow cytometry showed that the pyroptosis rate of AGE group was significantly higher than that of N group and AGE+Met group (F=32.598, P<0.01). The DCFH-DA detection results showed that the intracellular ROS levels in the N group and AGE+Met group were significantly lower than those in the AGE group, with the significant difference (F=47.267, P<0.01). The mRNA (F=51.563, 32.192, 44.473; P<0.01) and protein levels (F=63.372, 54.463, 48.412; P<0.01) of NLRP3, cleaved-GSDMD, and cleaved-Caspase-1 in hRMEC of the AGE+Met group were significantly reduced compared to the N group. ConclusionMet can down regulate the expression of NLRP3 inflammatory body related factors in hRMEC and inhibit pyroptosis.

    Release date: Export PDF Favorites Scan
  • Research progress of exosomes in treatment of osteoporosis

    Objective To review the research progress of exosomes (EXOs) derived from different cells in the treatment of osteoporosis (OP). Methods Recent relevant literature about EXOs for OP therapy was extensively reviewed. And the related mechanism and clinical application prospect of EXOs derived from different cells in OP therapy were summarized and analyzed. Results EXOs derived from various cells, including bone marrow mesenchymal stem cells, osteoblasts, osteoclasts, osteocytes, and endothelial cells, et al, can participate in many links in the process of bone remodeling, and their mechanisms involve the regulation of proliferation and differentiation of bone-related cells, the promotion of vascular regeneration and immune regulation, and the suppression of inflammatory reactions. A variety of bioactive substances contained in EXOs are the basis of regulating the process of bone remodeling, and the combination of genetic engineering technology and EXOs-based drug delivery can further improve the therapeutic effect of OP. Conclusion EXOs derived from different cells have great therapeutic effects on OP, and have the advantages of low immunogenicity, high stability, strong targeting ability, and easy storage. EXOs has broad clinical application prospects and is expected to become a new strategy for OP treatment.

    Release date:2022-01-12 11:00 Export PDF Favorites Scan
  • Research on influence mechanism of G protein coupled receptor kinase interacting protein 1 on differentiation of bone marrow mesenchymal stem cells into endothelial cells

    ObjectiveTo investigate the mechanism of G protein coupled receptor kinase interacting protein 1 (GIT1) affecting angiogenesis by comparing the differentiation of bone marrow mesenchymal stem cells (BMSCs) differentiated into endothelial cells between GIT1 wild type mice and GIT1 gene knockout mice.MethodsMale and female GIT1 heterozygous mice were paired breeding, and the genotypic identification of newborn mice were detected by PCR. The 2nd generation BMSCs isolated from GIT1 wild type mice or GIT1 gene knockout mice were divided into 4 groups, including wild type control group (group A), wild type experimental group (group A1), GIT1 knockout control group (group B), and GIT1 knockout experimental group (group B1). The cells of groups A1 and B1 were cultured with the endothelial induction medium and the cells of groups A and B with normal cluture medium. The expressions of vascular endothelial growth factor receptor 2 (VEGFR-2), VEGFR-3, and phospho-VEGFR-2 (pVEGFR-2), and pVEGFR-3 proteins were detected by Western blot. The endothelial cell markers [von Willebrand factor (vWF), platelet-endothelial cell adhesion molecule 1 (PECAM-1), and vascular endothelial cadherin (VE-Cadherin)] were detected by flow cytometry. The 2nd generation BMSCs of GIT1 wild type mice were divided into 4 groups according to the different culture media: group Ⅰ, primary cell culture medium; group Ⅱ, cell culture medium containing SAR131675 (VEGFR-3 blocker); group Ⅲ, endothelial induction medium; group Ⅳ, endothelial induction medium containing SAR131675. The endothelial cell markers (vWF, PECAM-1, and VE-Cadherin) in 4 groups were also detected by flow cytometry.ResultsWestern blot results showed that there was no obviously difference in protein expressions of VEGFR-2 and pVEGFR-2 between groups; and the expressions of VEGFR-3 and pVEGFR-3 proteins in group A1 were obviously higher than those in groups A, B, and B1. The flow cytometry results showed that the expressions of vWF, PECAM-1, and VE-Cadherin were significantly higher in group A1 than in groups A, B, and B1 (P<0.05), and in group B1 than in groups A and B (P<0.05); but no significant difference was found between groups A and B (P>0.05). In the VEGFR-3 blocked experiment, the flow cytometry results showed that the expressions of vWF, PECAM-1, and VE-Cadherin were significantly higher in group Ⅲ than in groupsⅠ, Ⅱ, and Ⅳ, and in group Ⅳ than in groups Ⅰ and Ⅱ (P<0.05); but no significant difference was found between groups Ⅰ and Ⅱ (P>0.05).ConclusionGIT1 mediates BMSCs of mice differentiation into endothelial cells via VEGFR-3, thereby affecting the angiogenesis.

    Release date:2018-03-07 04:35 Export PDF Favorites Scan
5 pages Previous 1 2 3 4 5 Next

Format

Content