west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "ensemble empirical mode decomposition" 10 results
  • Research on ECG De-noising Method Based on Ensemble Empirical Mode Decomposition and Wavelet Transform Using Improved Threshold Function

    A de-noising method for electrocardiogram (ECG) based on ensemble empirical mode decomposition (EEMD) and wavelet threshold de-noising theory is proposed in our school. We decomposed noised ECG signals with the proposed method using the EEMD and calculated a series of intrinsic mode functions (IMFs). Then we selected IMFs and reconstructed them to realize the de-noising for ECG. The processed ECG signals were filtered again with wavelet transform using improved threshold function. In the experiments, MIT-BIH ECG database was used for evaluating the performance of the proposed method, contrasting with de-noising method based on EEMD and wavelet transform with improved threshold function alone in parameters of signal to noise ratio (SNR) and mean square error (MSE). The results showed that the ECG waveforms de-noised with the proposed method were smooth and the amplitudes of ECG features did not attenuate. In conclusion, the method discussed in this paper can realize the ECG de-noising and meanwhile keep the characteristics of original ECG signal.

    Release date: Export PDF Favorites Scan
  • Study on Steady State Visual Evoked Potential Target Detection Based on Two-dimensional Ensemble Empirical Mode Decomposition

    Brain computer interface is a control system between brain and outside devices by transforming electroencephalogram (EEG) signal. The brain computer interface system does not depend on the normal output pathways, such as peripheral nerve and muscle tissue, so it can provide a new way of the communication control for paralysis or nerve muscle damaged disabled persons. Steady state visual evoked potential (SSVEP) is one of non-invasive EEG signals, and it has been widely used in research in recent years. SSVEP is a kind of rhythmic brain activity simulated by continuous visual stimuli. SSVEP frequency is composed of a fixed visual stimulation frequency and its harmonic frequencies. The two-dimensional ensemble empirical mode decomposition (2D-EEMD) is an improved algorithm of the classical empirical mode decomposition (EMD) algorithm which extended the decomposition to two-dimensional direction. 2D-EEMD has been widely used in ocean hurricane, nuclear magnetic resonance imaging (MRI), Lena image and other related image processing fields. The present study shown in this paper initiatively applies 2D-EEMD to SSVEP. The decomposition, the 2-D picture of intrinsic mode function (IMF), can show the SSVEP frequency clearly. The SSVEP IMFs which had filtered noise and artifacts were mapped into the head picture to reflect the time changing trend of brain responding visual stimuli, and to reflect responding intension based on different brain regions. The results showed that the occipital region had the strongest response. Finally, this study used short-time Fourier transform (STFT) to detect SSVEP frequency of the 2D-EEMD reconstructed signal, and the accuracy rate increased by 16%.

    Release date: Export PDF Favorites Scan
  • Removal Algorithm of Power Line Interference in Electrocardiogram Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

    Electrocardiogram (ECG) signals are susceptible to be disturbed by 50 Hz power line interference (PLI) in the process of acquisition and conversion. This paper, therefore, proposes a novel PLI removal algorithm based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD). Firstly, according to the morphological differences in ECG waveform characteristics, the noisy ECG signal was decomposed into the mutated component, the smooth component and the residual component by MCA. Secondly, intrinsic mode functions (IMF) of PLI was filtered. The noise suppression rate (NSR) and the signal distortion ratio (SDR) were used to evaluate the effect of de-noising algorithm. Finally, the ECG signals were re-constructed. Based on the experimental comparison, it was concluded that the proposed algorithm had better filtering functions than the improved Levkov algorithm, because it could not only effectively filter the PLI, but also have smaller SDR value.

    Release date: Export PDF Favorites Scan
  • Study on Electrocardiogram Signal De-noising Methods Based on Ensemble Empirical Mode Decomposition Decomposed by White Noise

    Ensemble empirical mode decomposition (EEMD) is an effective method for non-stationary signal analysis, such as electrocardiogram (ECG) signals. However, the precision and correctness of EEMD are affected by the two parameters, ratio of the added noise and ensemble number. The values of two parameters are set relying on experience and lacking of adaptability for uncertain signals. In order to solve these problems, we proposed a method based on white noise decomposed by EEMD in the present study shown in this paper. Empirical mode decomposition (EMD) was applied to decompose the signal to different intrinsic mode functions (IMFs) in the de-noising process. The white noise IMFs were selected to constitute high frequency part based on the character that the product of the energy density of white noise and its average period tended to be a constant. Then the two parameters of EEMD were adaptively obtained according to the criterion which was used to avoid modal aliasing. Experimental results showed that the method was an effective one for ECG signal de-noising.

    Release date: Export PDF Favorites Scan
  • Novel type of unperturbed sleep monitoring scheme under pillow based on hidden Markov model

    Sleep status is an important indicator to evaluate the health status of human beings. In this paper, we proposed a novel type of unperturbed sleep monitoring system under pillow to identify the pattern change of heart rate variability (HRV) through obtained RR interval signal, and to calculate the corresponding sleep stages combined with hidden Markov model (HMM) under the no-perception condition. In order to solve the existing problems of sleep staging based on HMM, ensemble empirical mode decomposition (EEMD) was proposed to eliminate the error caused by the individual differences in HRV and then to calculate the corresponding sleep stages. Ten normal subjects of different age and gender without sleep disorders were selected from Guangzhou Institute of Respirator Diseases for heart rate monitoring. Comparing sleep stage results based on HMM to that of polysomnography (PSG), the experimental results validate that the proposed noninvasive monitoring system can capture the sleep stages S1–S4 with an accuracy more than 60%, and performs superior to that of the existing sleep staging scheme based on HMM.

    Release date:2018-04-16 09:57 Export PDF Favorites Scan
  • Processing of impedance cardiogram differential for non-invasive cardiac function detection

    The precise recognition of feature points of impedance cardiogram (ICG) is the precondition of calculating hemodynamic parameters based on thoracic bioimpedance. To improve the accuracy of detecting feature points of ICG signals, a new method was proposed to de-noise ICG signal based on the adaptive ensemble empirical mode decomposition and wavelet threshold firstly, and then on the basis of adaptive ensemble empirical mode decomposition, we combined difference and adaptive segmentation to detect the feature points, A, B, C and X, in ICG signal. We selected randomly 30 ICG signals in different forms from diverse cardiac patients to examine the accuracy of the proposed approach and the accuracy rate of the proposed algorithm is 99.72%. The improved accuracy rate of feature detection can help to get more accurate cardiac hemodynamic parameters on the basis of thoracic bioimpedance.

    Release date:2019-02-18 03:16 Export PDF Favorites Scan
  • Research on heart rate extraction algorithm in motion state based on normalized least mean square combining ensemble empirical mode decomposition

    In order to eliminate the influence of motion artifacts, high-frequency noise and baseline drift on photoplethysmographic (PPG), and to obtain the accurate value of heart rate in motion state, this paper proposed a de-noising method of PPG signal based on normalized least mean square (NLMS) adaptive filtering combining ensemble empirical mode decomposition(EEMD). Firstly, the PPG signal containing noise is passed through an adaptive filter with a 3-axis acceleration sensor as a reference signal to filter out motion artifacts. Secondly, the PPG signal is decomposed by EEMD to obtain a series of intrinsic modal function (IMF) according to the frequency from high to low. The threshold range of the signal is judged by the permutation entropy (PE) criterion, thereby filtering out the high frequency noise and the baseline drift. The experimental results show that the Pearson correlation coefficient between the calculated heart rate of PPG signal and the standard heart rate based on electrocardiogram (ECG) signal is 0.731 and the average absolute error percentage is 6.10% under different motion states, which indicates that the method can accurately calculate the heart rate in moving state and is beneficial to the physiological monitoring under the state of human motion.

    Release date:2020-04-18 10:01 Export PDF Favorites Scan
  • A spike denoising method combined principal component analysis with wavelet and ensemble empirical mode decomposition

    Spike recorded by multi-channel microelectrode array is very weak and susceptible to interference, whose noisy characteristic affects the accuracy of spike detection. Aiming at the independent white noise, correlation noise and colored noise in the process of spike detection, combining principal component analysis (PCA), wavelet analysis and adaptive time-frequency analysis, a new denoising method (PCWE) that combines PCA-wavelet (PCAW) and ensemble empirical mode decomposition is proposed. Firstly, the principal component was extracted and removed as correlation noise using PCA. Then the wavelet-threshold method was used to remove the independent white noise. Finally, EEMD was used to decompose the noise into the intrinsic modal function of each layer and remove the colored noise. The simulation results showed that PCWE can increase the signal-to-noise ratio by about 2.67 dB and decrease the standard deviation by about 0.4 μV, which apparently improved the accuracy of spike detection. The results of measured data showed that PCWE can increase the signal-to-noise ratio by about 1.33 dB and reduce the standard deviation by about 18.33 μV, which showed its good denoising performance. The results of this study suggests that PCWE can improve the reliability of spike signal and provide an accurate and effective spike denoising new method for the encoding and decoding of neural signal.

    Release date:2020-06-28 07:05 Export PDF Favorites Scan
  • Research on automatic removal of ocular artifacts from single channel electroencephalogram signals based on wavelet transform and ensemble empirical mode decomposition

    The brain-computer interface (BCI) systems used in practical applications require as few electroencephalogram (EEG) acquisition channels as possible. However, when it is reduced to one channel, it is difficult to remove the electrooculogram (EOG) artifacts. Therefore, this paper proposed an EOG artifact removal algorithm based on wavelet transform and ensemble empirical mode decomposition. Firstly, the single channel EEG signal is subjected to wavelet transform, and the wavelet components which involve EOG artifact are decomposed by ensemble empirical mode decomposition. Then the predefined autocorrelation coefficient threshold is used to automatically select and remove the intrinsic modal functions which mainly composed of EOG components. And finally the ‘clean’ EEG signal is reconstructed. The comparative experiments on the simulation data and the real data show that the algorithm proposed in this paper solves the problem of automatic removal of EOG artifacts in single-channel EEG signals. It can effectively remove the EOG artifacts when causes less EEG distortion and has less algorithm complexity at the same time. It helps to promote the BCI technology out of the laboratory and toward commercial application.

    Release date: Export PDF Favorites Scan
  • Snoring noise removal method for bowel sound signal during sleep

    Monitoring of bowel sounds is an important method to assess bowel motility during sleep, but it is seriously affected by snoring noise. In this paper, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method was applied to remove snoring noise from bowel sounds during sleep. Specifically, the noisy bowel sounds were first band-pass filtered, then decomposed by the CEEMDAN method, and finally the appropriate components were selected to reconstruct the pure bowel sounds. The results of semi-simulated and real data showed that the CEEMDAN method was better than empirical mode decomposition and wavelet denoising method. The CEEMDAN method is used to remove snoring noise from bowel sounds during sleep, which lays an important foundation for using bowel sounds to assess the intestinal motility during sleep.

    Release date:2024-04-24 09:50 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content