To provide the scientific theoretical basis for cl inical practice by comparing biomechanicalcharacteristics of single compressed plate with intramedullary pin, locking intramedullary nail and simple arm externalfixator with simple internal fixation devices. Methods Eighteen wet humeral bone specimens of adult cadaver were madecompl icated fracture models of humeral shaft and divided into 3 groups according to fixation methods. Fracture was fixed by single compressed plate with intramedullary pin in plate group, by locking intramedullary nail in intramedullary nail group and by external fixator with simple internal fixation devices in external fixator group. The intensity and rigidity of compl icated fracture models of humeral shaft was measured in compress test and torsion test. Results In compress test, the maximum load in plate group (6 162.09 ± 521.06) N and in intramedullary nail group (6 738.32 ± 525.89) N was significantly larger than that in external fixator group (2 753.57 ± 185.59) N (P lt; 0.05); but there was no significant difference between plate group and intramedullary nail group (P gt; 0.05). Under 600 N physiological compress load, the rigidity was (171.69 ± 6.49) N/mm in plate group, (333.04 ± 36.85) N/mm in intramedullary nail group and (132.59 ± 2.93) N/mm in external fixator group; showing no significant difference between plate group and external fixator group (P gt; 0.05), and showing significant difference between intramedullary nail group and plate, external fixator groups (P lt; 0.05). In torsion test, the maximum torque in plate group (38.24 ± 7.08) Nm was significantly larger than those in intramedullary nail group (17.12 ± 5.73) Nm and external fixator group (20.26 ± 6.42) Nm (P lt; 0.05), but there was no significant difference between intramedullary nail group and external fixator group (P gt; 0.05). Under 0.80 Nm physiological torque, the rigidity was (16.36 ± 2.07) Ncm/° in plate group and (18.79 ± 2.62) Ncm/° in external fixator group, which was significantly larger than that in intramedullary nail group (11.45 ± 0.22) Ncm/° (P lt; 0.05); but there was no significant difference between plate group and external fixator group (P gt; 0.05). Conclusion Those fracture models fixed by single compressed plate with intramedullary pin have better compress and torsion intensity, they also have better torsion rigidity but less compress rigidity. Those fracture models fixed by locking intramedullary nail have better compress intensity but less torsion intensity, they also have better compress rigidity but less torsion rigidity. Those fracture models fixed by external fixator with simple internal fixation device have less compress and torsion intensity, they also have less compress rigidity but better torsion rigidity.
A series of 28 cases of fractures of the small tubular bones of the hand, including Bennetts fracture, were treated with the minor unilateral multifunctional external fixator. After manipulation, a hole was drilled on the proximal and distal parts of the fractured bone. Hand in functional position, the external fixator was set in place. Functional exercises were begun after the fixation. The patients were follwed up for two to six months. The average healing time was thirtyfive days. The average healing time for Bennett’s fractures was twentyeight days, and for the fractures of metacarpal bone was forty-two days. There were no deformity and complication of infection following external fixation.The functional recovery of the hands was satisfactory. The fixator had the following advantages: It was simple and had tight fixation; fractures with infection, was still indicated and could be adjusted according to the clinical purpose.
Objective To investigate the effectiveness of single Taylor external fixator combined with biplanar osteotomy on correction of tibial multiplanar deformities. Methods Between October 2016 and December 2021, 11 patients with tibial multiplanar deformities (20 sides) were treated with single Taylor external fixator and biplanar osteotomy. Of them, 4 were male and 7 were female; the average age ranged from 13 to 33 years (mean, 21.9 years). Diagnosis included rickets severe genu varum deformity (7 cases, 14 sides), rickets severe genu valgum deformity (2 cases, 4 sides), multiple osteochondromatosis calf deformity (1 case, 1 side), neurofibromatosis medial lower leg anterior arch deformity with short of leg (1 case, 1 side). After fibular osteotomy and tibial multiplanar osteotomy, a Taylor external fixator was installed. After operation, the deformities were corrected successively and fixed completely. The osteotomy healed, then the external fixator was removed. Before operation and at 12 months after operation, the full-length X-ray films were taken. The leg-length discrepancy, medial proximal tibial angle (MPTA), lateral distal tibial angle (LDTA), posterior proximal tibial angle (PPTA), anterior distal tibial angle (ADTA), and tibial rotation angle were measured. The degree of lower limb deformity was scored with reference to a customized tibial mechanical axis scoring table. Results Osteotomy was successfully completed without neurovascular injury and other complications. The external fixator was adjusted for 28-46 days, with an average of 37 days, and the external fixator was worn for 136-292 days, with an average of 169 days. Mild needle infection during the fixation period occurred in 3 sides, refracture at the distal tibial osteotomy in 1 side after removing the external fixator, and nonunion of the distal fibular osteotomy in 1 side. All patients were followed up 369-397 days (mean, 375 days). At 12 months after operation, the lower limb discrepancy decreased, but there was no significant difference (P>0.05). MPTA, LDTA, PPTA, ADTA, and tibial rotation angle improved, and the differences in LDTA, ADTA, and tibial rotation angle were significant (P<0.05). The score of lower limb deformity was significantly higher than that before operation (P<0.05), and the results were excellent in 9 sides, good in 8 sides, fair in 3 sides, with the excellent and good rate of 85%. ConclusionSingle Taylor external fixator combined with biplanar osteotomy is effective in the correction of tibial multiplanar deformities.
Objective To evaluate the safety of conversion from external fixation to internal fixation for open tibia fractures. Methods Between January 2010 and December 2014, 94 patients (98 limbs) with open tibia fractures were initially treated with external fixators at the first stage, and the clinical data were retrospectively analyzed. In 29 cases (31 limbs), the external fixators were changed to internal fixation for discomfort, pin tract response, Schantz pin loosening, delayed union or non-union after complete wound healing and normal or close to normal levels of erythrocyte sedimentation rate (ESR), C reactive protein (CRP), and the leucocyte count as well as the neutrophil ratio (trial group); in 65 cases (67 limbs), the external fixators were used as the ultimate treatment in the control group. There was no significant difference in gender, age, side of the limbs, interval from injury to the first debridement, initial pathogenic bacteria, the limbs that skin grafting or flap transferring for skin and soft tissue defect between the two groups ( P>0.05). The incidence of Gustilo type III fractures in the control group was significantly higher than that in the trial group (P=0.000). The overall incidence of infection was calculated respectively in the two groups. The incidence of infection according to different fracture types and whether skin grafting or flap transferring was compared between the two groups. The information of the pathogenic bacteria was recorded in the infected patients, and it was compared with the results of the initial culture. The incidence of infection in the patients of the trial group using different internal fixation instruments was recorded. Results The overall incidences of infection for the trial and control groups were 9.7% (3/31) and 9.0% (6/67) respectively, showing no significant difference (χ2=0.013, P=0.909). No infection occurred in Gustilo type I and type II patients. The incidence of infection for Gustilo type IIIA patients in the trial group and the control group were 14.3% (1/7) and 6.3% (2/32) respectively, showing no significant difference (χ2=0.509, P=0.476); the incidence of infection for type IIIB patients in the two groups were 50.0% (2/4) and 14.3% (2/14) respectively, showing no significant difference (χ2=2.168, P=0.141); and the incidence of infection for type IIIC patients in the two groups were 0 and 16.7% (2/12) respectively, showing no significant difference (χ2=0.361, P=0.548). Of all the infected limbs, only 1 limb in the trial group had the same Staphylococcus Aureus as the result of the initial culture. In the patients who underwent skin grafting or flap transferring, the incidence of infection in the trial and control groups were 33.3% (2/6) and 13.3% (2/15) respectively, showing no significant difference (χ2=1.059, P=0.303). After conversion to internal fixation, no infection occurred in the cases that fixed with nails (11 limbs), and infection occurred in 4 of 20 limbs that fixed with plates, with an incidence of infection of 20%. Conclusion Conversion from external fixation to internal fixation for open tibia fractures is safe in most cases. However, for open tibia fractures with extensive and severe soft tissue injury, especially Gustilo type III patients who achieved wound heal after flap transfer or skin grafting, the choice of secondary conversion to internal fixation should carried out cautiously. Careful pre-operative evaluation of soft tissue status, cautious choice of fixation instrument and meticulous intra-operative soft tissue protection are essential for its safety.
Objective To investigate the effectiveness of arthroscopy-assisted combined fixation of Kirschner wire and external fixator for treating extreme distal radial fractures. Methods Between January 2014 and May 2016, 21 patients who suffered from extreme distal radial fractures were treated by arthroscopy-assisted combined fixation of Kirschner wire and external fixator. There were 14 males and 7 females with an age of 32-57 years (mean, 42.3 years). The causes of injury included falling in 13 cases and traffic accident in 8 cases. The fracture type included 8 cases of type 23C1, 9 cases of type 23C2, and 4 cases of type 23C3 according to AO/OTA classification. The time from injury to operation was 3-7 days (mean, 4.4 days). The Mayo score and disability of arm, shoulder, and hand (DASH) score were used to assess the pain and function of the wrist joint. Results There was no needle red swelling, tendon irritation, or orther early complications. All the patients were followed up 10-35 months (mean, 18.3 months). The fracture healing time was 9-13 weeks (mean, 10.6 weeks). At last follow-up, the Mayo score was 87-94 (mean, 90.9); and 17 cases were excellent and 4 were good. The DASH score was 7-13 (mean, 10.6). Conclusion Arthroscopy-assisted combined fixation of Kirschner wire and external fixator for treating extreme distal radial fractures has the advantages of firm fixation, early functional exercise, less postoperative complications, and good functional recovery of wrist joint.
Objective To explore the effectiveness of mini external fixators combined with bone cement spacers in the treatment of gouty hallux rigidus with bone defects. Methods A retrospective analysis was conducted on the clinical data of 21 male patients diagnosed with gouty hallux rigidus and bone defects, treated with mini external fixators combined with bone cement spacers between January 2017 and December 2024. The age ranged from 35 to 72 years, with an average age of 61.1 years. The disease duration was 12-35 years, with an average of 18.2 years. The American College of Rheumatology (ACR) gout score ranged from 16 to 23, with an average of 18.6. All 21 cases of hallux rigidus were classified as grade 3 according to the Coughlin classification. Clinical efficacy was evaluated preoperatively and at 6 months postoperatively using the visual analogue scale (VAS) score for pain, the dorsiflexion angle of first metatarsophalangeal joint in a weight-bearing state, and the American Orthopaedic Foot & Ankle Society (AOFAS) score. Radiological evaluation was performed by measuring the hallux valgus angle (HVA) using weight-bearing X-ray films and the tophi volume using dual-energy CT. Results The operation time ranged from 30 to 56 minutes, with an average of 42.05 minutes. The intraoperative blood loss varied between 10 and 30 mL, averaging 20 mL. All 21 patients were followed up 6-15 months, averaging 9.3 months. One patient experienced delayed wound healing due to the liquefaction of residual tophus; no other patients exhibited complications such as wound or pin tract infections, skin necrosis, fractures, or metastatic metatarsalgia. Six patients experienced acute gout attacks 4-7 days postoperatively, which were effectively alleviated through symptomatic treatment. At 6 months after operation, patients showed significant improvements in HVA, tophus volume, VAS scores, AOFAS scores, and the dorsiflexion angle of first metatarsophalangeal joint compared to preoperative values, with significant differences (P<0.05). ConclusionMini external fixator combined with a cement spacer is an effective treatment for gouty hallux rigidus with bone defects.
Objective To investigate the effectiveness of hinged external fixator with mini-plate to treat terrible triad of the elbow. Methods Between August 2008 and June 2011, 11 patients with terrible triad of the elbow were treated with hinged external fixator combined with mini-plate. There were 9 males and 2 females, aged 22-56 years (mean, 34 years). The injuries were caused by falling from height in 8 cases and traffic accident in 3 cases. All patients were closed injury. The time from injury to operation varied from 8 hours to 7 days (mean, 3.7 days). According to Mason classification standard, all radial head fractures were type IV and complicated by posterior dislocation of the elbow; according to Regan-Morrey classification standard, ulna coronary process fractures were type I in 3 cases, type II in 3 cases, and type III in 5 cases. Results All the patients achieved primary healing of incision after operation and no nerve injury occurred. The patients were followed up 12-20 months (mean, 15 months). Two cases had screw channel infection after 12 weeks of operation, and 1 case had mild heterotopic ossification of the elbow after 4 months of operation. X-ray films showed that all fractures healed from 8 to 20 weeks (mean, 16 weeks). No recurrent dislocation or instability of the elbow occurred. At 12 months after operation, the elbow range of motion (ROM) were 120-145° (mean, 135°) in flexion, 0-25° (mean, 10°) in extension, 50-90° (mean, 70°) in pronation, and 50-80° (mean, 60°) in supination. According to Mayo elbow function evaluation standard, the results were excellent in 5 cases, good in 4 cases, and fair in 2 cases, with an excellent and good rate of 81.8%. Conclusion Hinged external fixator with mini-plate can enhance postoperative stability of the elbow. This therapy is beneficial to early functional exercise and obviously decrease the disability rate caused by complex damage on the elbow.
Objective To analyze the effectiveness comparison of external fixator combined with Kirschner wire fixation and Kirschner wire fixation in the treatment of cubitus varus deformity in children. Methods A retrospective case-control study was conducted to collect 36 children of postoperative supracondylar humerus fracture complicating cubitus varus deformity between January 2018 and July 2022. Among them, 17 cases were treated with distal humeral wedge osteotomy external fixation combined with Kirschner wire fixation (observation group), and 19 cases were treated with distal humeral wedge osteotomy and Kirschner wire fixation (control group). The baseline data including age, gender, deformity side, time from fracture to operation, carrying angle of the healthy side and preoperative carrying angle of the affected side, elbow flexion and extension range of motion, and lateral condylar prominence index (LCPI) showed no significant difference between the two groups (P>0.05). The operation time, hospitalization cost, healing time of osteotomy, postoperative complications, and the carrying angle, LCPI, and elbow flexion and extention range of motion were recorded and compared between the two groups. The elbow function was assessed by Oppenheim score at 3 months after operation and at last follow-up. Results The children in both groups were followed up 13-48 months, with an average of 26.7 months. There was 1 case of needle tract infection in the observation group and 2 cases in the control group, and no nerve injury occurred, the difference in the incidence of complication (5.88% vs 10.53%) between the two groups was not significant (χ2=0.502, P=0.593). There was no significant difference in the operation time and fracture healing time between the two groups (P>0.05); the hospitalization cost of the observation group was significantly higher than that of the control group (P<0.05). The Oppenheim score of the observation group was significantly better than that of the control group at 3 months after operation (P<0.05), but there was no significant difference in the Oppenheim score between the two groups at last follow-up (P>0.05). At last follow-up, the carrying angle of affected side significantly improved in both groups when compared with preoperative ones (P<0.05); the differences of the pre- and post-operative carrying angle of affected side and elbow flexion and extension range of motion showed no significant differences between the two groups (P>0.05), but the difference in pre- and post-operative LCPI of the observation group was significantly better than that of the control group (P<0.05). ConclusionExternal fixator combined with Kirschner wire fixation and Kirschner wire fixation both can achieve satisfactory correction of cubitus varus deformity in children, and the former can achieve better short-term functional recovery of elbow joint and reduce the incidence of humeral lateral condyle protrusion.
Objective To evaluate the effectiveness of limited internal fixation combined with a hinged external fixator in the treatment of peri-elbow bone infection. Methods The clinical data of 19 patients with peri-elbow bone infection treated with limited internal fixation combined with a hinged external fixator between May 2018 and May 2021 were retrospectively analyzed. There were 15 males and 4 females with an average age of 44.6 years (range, 28-61 years). There were 13 cases of distal humerus fractures and 6 cases of proximal ulna fractures. All the 19 cases were infected after internal fixation of fracture, and 2 cases were complicated with radial nerve injury. According to Cierny-Mader anatomical classification, 11 cases were type Ⅱ, 6 cases were type Ⅲ, and 2 cases were type Ⅳ. The duration of bone infection was 1-3 years. After primary debridement, the bone defect was (3.04±0.28) cm, and the antibiotic bone cement was implanted into the defect area, and the external fixator was installed; 3 cases were repaired with latissimus dorsi myocutaneous flap, and 2 cases were repaired with lateral brachial fascial flap. Bone defects repair and reconstruction were performed after 6-8 weeks of infection control. The wound healing was observed, and white blood cell (WBC), erythrocyte sedimentation rate (ESR), and C-reaction protein (CRP) were reexamined regularly after operation to evaluate the infection control. X-ray films of the affected limb were taken regularly after operation to observe the bone healing in the defect area. At last follow-up, the flexion and extension range of motion and the total range of motion of the elbow joint were observed and recorded, and compared with those before operation, and the function of the elbow joint was evaluated by Mayo score. Results All patients were followed up 12-34 months (mean, 26.2 months). The wounds healed in 5 cases after skin flap repair. Two cases of recurrent infection were effectively controlled by debridement again and replacement of antibiotic bone cement. The infection control rate was 89.47% (17/19) in the first stage. Two patients with radial nerve injury had poor muscle strength of the affected limb, and the muscle strength of the affected limb recovered from grade Ⅲ to about grade Ⅳ after rehabilitation exercise. During the follow-up period, there was no complication such as incision ulceration, exudation, bone nonunion, infection recurrence, or infection in the bone harvesting area. Bone healing time ranged from 16 to 37 weeks, with an average of 24.2 weeks. WBC, ESR, CRP, PCT, and elbow flexion, extension, and total range of motions significantly improved at last follow-up (P<0.05). According to Mayo elbow scoring system, the results were excellent in 14 cases, good in 3 cases, and fair in 2 cases, and the excellent and good rate was 89.47%. ConclusionLimited internal fixation combined with a hinged external fixator in the treatment of the peri-elbow bone infection can effectively control infection and restore the function of the elbow joint.
ObjectiveTo explore the mechanical stability of the three-dimensional (3-D) external fixator for osteoporotic fracture so as to provide the biomechanical basis for clinical application. MethodsForty-five fresh frozen adult tibial specimens were selected to rapidly prepare the extracorporal tibia osteoporotic fracture models, and were randomly divided into 3 groups (n=15). Fractures were fixed with 3-D external fixators (3-D external fixators group), intramedullary nails (intramedullary nail group), and plate (plate group) respectively. Five specimens randomly from each group were used to do axial compression test, three-point bending test, and torsion test with microcomputer control electronic universal testing machine, then the mechanical parameters were calculated. ResultsIn the axial compression test, the displacement of 3-D external fixator group and intramedullary nail group were shorter than plate group, showing significant differences (P<0.05); but no significant difference was found between 3-D external fixator group and intramedullary nail group (P>0.05). In the three-point bending test and torsion test, the deflection and the torsional angle of 3-D external fixator group and intramedullary nail group were smaller than plate group, showing significant differences (P<0.05); but no significant difference was found between 3-D external fixator group and intramedullary nail group (P>0.05). ConclusionThe 3-D external fixator can fix fracture three-dimensionally from multiple plane and it can offer strong fixing. It is biomechanically demonstrated to be suitable for osteoporotic fracture.