The mechanical properties of nitinol iliac vein stent (NIVS) have been studied by many scholars at home and abroad, but the study on the mechanical properties of iliac vein stent under different release scales has not been reported yet. Based on the finite element analysis method, the mechanical properties of three self-developed NIVS were studied to reveal the influence of stent diameters (12, 14, 16 mm) and different release scales (80%, 90%) on its strength, fatigue life and vein wall biomechanical properties. With an increases in the release scales, the equivalent elastic strain, fatigue strength safety factors, and vessel wall equivalent stress exhibited a downward trend, while the most stressed cross-section coincided with the arc of stent-connecting rods. Through 30, 60 and 90 days’ animal test, a narrowed vascular model was established in the iliac veins of 12 pigs, and the developed iliac vein stents were implanted to comprehensively evaluate the safety and effectiveness of the stent, and at the same time the mechanical properties of stents were verified to provide important reference for the type inspection and clinical trials of follow-up products.
In order to evaluate the safety performance of self-expandable NiTi alloy stents systematically, the dynamic safety factor drawn up by International Organization for Standardization, was used to quantitatively reflect the safety performance of stents. Based on the constitutive model of super-elastic memory alloy material in Abaqus and uniaxial tensile test data of NiTi alloy tube, finite element method and experiments on accelerated fatigue life were carried out to simulate the self-expansion process and the shape change process under the action of high and low blood pressure for three L-type stents of Φ8×30 mm, Φ10×30 mm, Φ12×30 mm. By analyzing the changes of stress and strain of self-expanding NiTi alloy stent, the maximum stress and strain, stress concentration position, fatigue strength and possible failure modes were studied, thus the dynamic safety factor of stent was calculated. The results showed that the maximum stress and plastic strain of the stent increased with the increase of grip pressure, but the maximum stress and strain distribution area of the stent had no significant change, which were all concentrated in the inner arc between the support and the connector. The dynamic safety factors of the three stents were 1.31, 1.23 and 1.14, respectively, which indicates that the three stents have better safety and reliability, and can meet the fatigue life requirements of more than 10 years, and safety performance of the three stents decreases with the increase of stent’s original diameter.