west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "feature extraction" 32 results
  • Using electroencephalogram for emotion recognition based on filter-bank long short-term memory networks

    Emotion plays an important role in people's cognition and communication. By analyzing electroencephalogram (EEG) signals to identify internal emotions and feedback emotional information in an active or passive way, affective brain-computer interactions can effectively promote human-computer interaction. This paper focuses on emotion recognition using EEG. We systematically evaluate the performance of state-of-the-art feature extraction and classification methods with a public-available dataset for emotion analysis using physiological signals (DEAP). The common random split method will lead to high correlation between training and testing samples. Thus, we use block-wise K fold cross validation. Moreover, we compare the accuracy of emotion recognition with different time window length. The experimental results indicate that 4 s time window is appropriate for sampling. Filter-bank long short-term memory networks (FBLSTM) using differential entropy features as input was proposed. The average accuracy of low and high in valance dimension, arousal dimension and combination of the four in valance-arousal plane is 78.8%, 78.4% and 70.3%, respectively. These results demonstrate the advantage of our emotion recognition model over the current studies in terms of classification accuracy. Our model might provide a novel method for emotion recognition in affective brain-computer interactions.

    Release date:2021-08-16 04:59 Export PDF Favorites Scan
  • Detection of microcalcification clusters regions in mammograms combining discriminative deep belief networks

    In order to overcome the shortcomings of high false positive rate and poor generalization in the detection of microcalcification clusters regions, this paper proposes a method combining discriminative deep belief networks (DDBNs) to automatically and quickly locate the regions of microcalcification clusters in mammograms. Firstly, the breast region was extracted and enhanced, and the enhanced breast region was segmented to overlapped sub-blocks. Then the sub-block was subjected to wavelet filtering. After that, DDBNs model for breast sub-block feature extraction and classification was constructed, and the pre-trained DDBNs was converted to deep neural networks (DNN) using a softmax classifier, and the network is fine-tuned by back propagation. Finally, the undetected mammogram was inputted to complete the location of suspicious lesions. By experimentally verifying 105 mammograms with microcalcifications from the Digital Database for Screening Mammography (DDSM), the method obtained a true positive rate of 99.45% and a false positive rate of 1.89%, and it only took about 16 s to detect a 2 888 × 4 680 image. The experimental results showed that the algorithm of this paper effectively reduced the false positive rate while ensuring a high positive rate. The detection of calcification clusters was highly consistent with expert marks, which provides a new research idea for the automatic detection of microcalcification clusters area in mammograms.

    Release date:2021-06-18 04:50 Export PDF Favorites Scan
  • A three dimensional convolutional neural network pulmonary nodule detection algorithm based on the multi-scale attention mechanism

    Early screening based on computed tomography (CT) pulmonary nodule detection is an important means to reduce lung cancer mortality, and in recent years three dimensional convolutional neural network (3D CNN) has achieved success and continuous development in the field of lung nodule detection. We proposed a pulmonary nodule detection algorithm by using 3D CNN based on a multi-scale attention mechanism. Aiming at the characteristics of different sizes and shapes of lung nodules, we designed a multi-scale feature extraction module to extract the corresponding features of different scales. Through the attention module, the correlation information between the features was mined from both spatial and channel perspectives to strengthen the features. The extracted features entered into a pyramid-similar fusion mechanism, so that the features would contain both deep semantic information and shallow location information, which is more conducive to target positioning and bounding box regression. On representative LUNA16 datasets, compared with other advanced methods, this method significantly improved the detection sensitivity, which can provide theoretical reference for clinical medicine.

    Release date:2022-06-28 04:35 Export PDF Favorites Scan
  • Assessment of skin aging grading based on computer vision

    Skin aging is the most intuitive and obvious sign of the human aging processes. Qualitative and quantitative determination of skin aging is of particular importance for the evaluation of human aging and anti-aging treatment effects. To solve the problem of subjectivity of conventional skin aging grading methods, the self-organizing map (SOM) network was used to explore an automatic method for skin aging grading. First, the ventral forearm skin images were obtained by a portable digital microscope and two texture parameters, i.e., mean width of skin furrows and the number of intersections were extracted by image processing algorithm. Then, the values of texture parameters were taken as inputs of SOM network to train the network. The experimental results showed that the network achieved an overall accuracy of 80.8%, compared with the aging grading results by human graders. The designed method appeared to be rapid and objective, which can be used for quantitative analysis of skin images, and automatic assessment of skin aging grading.

    Release date:2017-06-19 03:24 Export PDF Favorites Scan
  • Research of Partial Least Squares Decoding Method for Motion Intent

    Due to the sparsity of brain encoding, the neural ensemble signals recorded by microelectrode arrays contain a lot of noise and redundant information, which could reduce the stability and precision of decoding of motion intent. To solve this problem, we proposed a decoding method based on partial least squares (PLS) feature extraction in our study. Firstly, we extracted the features of spike signals using the PLS, and then classified them with support vector machine (SVM) classifier, and decoded them for motion intent. In this study, we decoded neural ensemble signals based on plus-maze test. The results have shown that the proposed method had a better stability and higher decoding accuracy, due to the PLS combined with classification model which overcame the shortcoming of PLS regression that was easily affected by accumulated effect of noise. Meanwhile, the PLS method extracted fewer features with more useful information in comparison with common feature extraction method. The decoding accuracy of real data sets were 93.59%, 84.00% and 83.59%, respectively.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
  • Resting-state electroencephalogram classification of patients with schizophrenia or depression

    The clinical manifestations of patients with schizophrenia and patients with depression not only have a certain similarity, but also change with the patient's mood, and thus lead to misdiagnosis in clinical diagnosis. Electroencephalogram (EEG) analysis provides an important reference and objective basis for accurate differentiation and diagnosis between patients with schizophrenia and patients with depression. In order to solve the problem of misdiagnosis between patients with schizophrenia and patients with depression, and to improve the accuracy of the classification and diagnosis of these two diseases, in this study we extracted the resting-state EEG features from 100 patients with depression and 100 patients with schizophrenia, including information entropy, sample entropy and approximate entropy, statistical properties feature and relative power spectral density (rPSD) of each EEG rhythm (δ, θ, α, β). Then feature vectors were formed to classify these two types of patients using the support vector machine (SVM) and the naive Bayes (NB) classifier. Experimental results indicate that: ① The rPSD feature vector P performs the best in classification, achieving an average accuracy of 84.2% and a highest accuracy of 86.3%; ② The accuracy of SVM is obviously better than that of NB; ③ For the rPSD of each rhythm, the β rhythm performs the best with the highest accuracy of 76%; ④ Electrodes with large feature weight are mainly concentrated in the frontal lobe and parietal lobe. The results of this study indicate that the rPSD feature vector P in conjunction with SVM can effectively distinguish depression and schizophrenia, and can also play an auxiliary role in the relevant clinical diagnosis.

    Release date:2020-02-18 09:21 Export PDF Favorites Scan
  • A heart sound classification method based on joint decision of extreme gradient boosting and deep neural network

    Heart sound is one of the common medical signals for diagnosing cardiovascular diseases. This paper studies the binary classification between normal or abnormal heart sounds, and proposes a heart sound classification algorithm based on the joint decision of extreme gradient boosting (XGBoost) and deep neural network, achieving a further improvement in feature extraction and model accuracy. First, the preprocessed heart sound recordings are segmented into four status, and five categories of features are extracted from the signals based on segmentation. The first four categories of features are sieved through recursive feature elimination, which is used as the input of the XGBoost classifier. The last category is the Mel-frequency cepstral coefficient (MFCC), which is used as the input of long short-term memory network (LSTM). Considering the imbalance of the data set, these two classifiers are both improved with weights. Finally, the heterogeneous integrated decision method is adopted to obtain the prediction. The algorithm was applied to the open heart sound database of the PhysioNet Computing in Cardiology(CINC) Challenge in 2016 on the PhysioNet website, to test the sensitivity, specificity, modified accuracy and F score. The results were 93%, 89.4%, 91.2% and 91.3% respectively. Compared with the results of machine learning, convolutional neural networks (CNN) and other methods used by other researchers, the accuracy and sensibility have been obviously improved, which proves that the method in this paper could effectively improve the accuracy of heart sound signal classification, and has great potential in the clinical auxiliary diagnosis application of some cardiovascular diseases.

    Release date:2021-04-21 04:23 Export PDF Favorites Scan
  • Tensor Feature Extraction Using Multi-linear Principal Component Analysis for Brain Computer Interface

    The brain computer interface (BCI) can be used to control external devices directly through electroencephalogram (EEG) information. A multi-linear principal component analysis (MPCA) framework was used for the limitations of tensor form of multichannel EEG signals processing based on traditional principal component analysis (PCA) and two-dimensional principal component analysis (2DPCA). Based on MPCA, we used the projection of tensor-matrix to achieve the goal of dimensionality reduction and features exaction. Then we used the Fisher linear classifier to classify the features. Furthermore, we used this novel method on the BCI competitionⅡdataset 4 and BCI competitionⅣdataset 3 in the experiment. The second-order tensor representation of time-space EEG data and the third-order tensor representation of time-space-frequency EEG data were used. The best results that were superior to those from other dimensionality reduction methods were obtained by much debugging on parameter P and testQ. For two-order tensor, the highest accuracy rates could be achieved as 81.0% and 40.1%, and for three-order tensor, the highest accuracy rates were 76.0% and 43.5%, respectively.

    Release date: Export PDF Favorites Scan
  • Feature Extraction for Cough-sound Recognition Based on Principle Component Analysis and Non-uniform Filter-bank

    Cough recognition provides important clinical information for the treatment of many respiratory diseases. A new Mel frequency cepstrum coefficient (MFCC) extracting method has been proposed on the basis of the distributional characteristics of cough spectrum. The whole frequency band was divided into several sub-bands, and the energy coefficient for each band was obtained by method of principle component analysis. Then non-uniform filter-bank in Mel frequency is designed to improve the extracting process of MFCC by distributing filters according to the spectrum energy coefficients. Cough recognition experiment using hidden Markov model was carried out, and the results showed that the proposed method could effectively improve the performance of cough recognition.

    Release date: Export PDF Favorites Scan
  • Study on Neurofeedback System Based on Electroencephalogram Signals

    Neurofeedback, as an alternative treatment method of behavioral medicine, is a technique which translates the electroencephalogram (EEG) signals to styles as sounds or animation to help people understand their own physical status and learn to enhance or suppress certain EEG signals to regulate their own brain functions after several repeated trainings. This paper develops a neurofeedback system on the foundation of brain-computer interface technique. The EEG features are extracted through real-time signal process and then translated to feedback information. Two feedback screens are designed for relaxation training and attention training individually. The veracity and feasibility of the neurofeedback system are validated through system simulation and preliminary experiment.

    Release date: Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content