west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "features interaction" 2 results
  • Features Interaction Lasso for Liver Disease Classification

    To solve the complex interaction problems of hepatitis disease classification, we proposed a lasso method (least absolute shrinkage and selection operator method) with feature interaction. First, lasso penalized function and hierarchical convex constraint were added to the interactive model which is newly defined. Then the model was solved with the convex optimal method combining Karush-Kuhn-Tucker (KKT) condition with generalized gradient descent. Finally, the sparse solution of the main effect features and interactive features were derived, and the classification model was implemented. The experiments were performed on two liver data sets and proved that features interaction contributed to the classification of liver diseases. The experimental results showed that the feature interaction lasso method was of strong explanatory ability, and its effectiveness and efficiency were superior to those of lasso, of all pair-wise lasso, support vector machine (SVM) method, K nearest neighbor (KNN) method, linear discriminant analysis (LDA) classification method, etc.

    Release date: Export PDF Favorites Scan
  • Generalized interaction LASSO based on alternating direction method of multipliers for liver disease classification

    Features and interaction between features of liver disease is of great significance for the classification of liver disease. Based on least absolute shrinkage and selection operator (LASSO) and interaction LASSO, the generalized interaction LASSO model is proposed in this paper for liver disease classification and compared with other methods. Firstly, the generalized interaction logistic classification model was constructed and the LASSO penalty constraints were added to the interactive model parameters. Then the model parameters were solved by an efficient alternating directions method of multipliers (ADMM) algorithm. The solutions of model parameters were sparse. Finally, the test samples were fed to the model and the classification results were obtained by the largest statistical probability. The experimental results of liver disorder dataset and India liver dataset obtained by the proposed methods showed that the coefficients of interaction features of the model were not zero, indicating that interaction features were contributive to classification. The accuracy of the generalized interaction LASSO method is better than that of the interaction LASSO method, and it is also better than that of traditional pattern recognition methods. The generalized interaction LASSO method can also be popularized to other disease classification areas.

    Release date:2017-06-19 03:24 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content